Contents

PHYS 123 Waves

Periodic Motion

Quantity Unit Definition
Period $\mathrm{s}$ $T = \dfrac{1}{f} = \dfrac{2\pi}{\omega}$
Frequency $\mathrm{Hz}$ $f = \dfrac{1}{T} = \dfrac{\omega}{2\pi}$
Angular frequency $\mathrm{s^{-1}}$ $\omega = 2\pi f = \dfrac{2\pi}{T}$

Simple harmonic motion (SHM)

Description Equations
Angular frequency in SHM $\omega = \sqrt{\dfrac{k}{m}}$
Spring constant $k = m\omega^2$
Displacement in SHM $x(t) = A\sin(\omega t + \phi)$
Velocity in SHM $v(t) = \omega A\cos(\omega t + \phi)$
Acceleration in SHM $a(t) = -\omega^2 A\sin(\omega t + \phi) = -\omega^2 x(t)$
Restoring force in SHM $F = -k\Delta x$
Simple harmonic oscillator equation $\frac{d^2 x}{dt^2} = -\omega^2 x = -\frac{k}{m}x$
Conservation of energy in SHM $E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$
Amplitude $A = \sqrt{x_0^2 + \dfrac{v_0^2}{\omega^2}}$
Phase angle $\phi = \arctan\left(\dfrac{\omega x_0}{v_0}\right)$

Applications of SHM

Description Equations
Restoring torque in angular SHM $\tau = -\kappa\Delta\theta$
Rotational displacement in angular SHM $\theta(t) = \theta_{\mathrm{max}}\sin(\omega t + \phi)$
Angular frequency in angular SHM $\omega = \sqrt{\dfrac{\kappa}{I}}$
Angular frequency in simple pendulum $\omega = \sqrt{\dfrac{g}{L}}$
Angular frequency in physical pendulum $\omega = \sqrt{\dfrac{mgL}{I}}$

Damped oscillation

Description Equations
Drag force $F = -bv$
Time constant $\tau = \dfrac{m}{b}$
Angular frequency of damped oscillator $\omega_d = \sqrt{\omega^2 - \left(\frac{b}{2m}\right)^2}$
Displacement of damped oscillator $x(t) = Ae^{-bt/2m}\sin(\omega_d t + \phi)$

1D Waves

Description Equations
Wave speed, wavelength, and frequency $c = \lambda f = \dfrac{\lambda}{T}$
Wave number $k = \dfrac{2\pi}{\lambda}$
Angular frequency $\omega = kc = 2\pi f$
Linear mass density $\mu = \dfrac{m}{l}$
Wave speed of strings $c = \sqrt{\dfrac{F_T}{\mu}}$
Particle speed $v = \frac{\partial f}{\partial t}$
Wave and particle speed $c \not= v$
Energy put into a wave $E = \frac{1}{2}\mu\lambda\omega^2A^2$
Average power supplied to produce waves $\begin{aligned}\overline{P} &= \mu cv^2 \cr &= \frac{1}{2}\mu c A^2\omega^2 \cr &= \frac{1}{2}\sqrt{\mu F_T}\omega^2A^2\end{aligned}$
Wave kinetic and potential energy $K = U$

Wave function and boundary conditions

Description Equations
Traveling wave functions $f(x,t) = f(x - ct)$ to right
$f(x,t) = f(x + ct)$ to left
Harmonic (sinusoidal) traveling wave functions $f(x,t) = A\sin(kx-\omega t+\phi)$ to right
$f(x,t) = A\sin(kx+\omega t+\phi)$ to left
1D wave equation $\dfrac{\partial^2 f}{\partial x^2} = \dfrac{1}{c^2}\dfrac{\partial^2 f}{\partial t^2}$
Principle of superposition $f(x,t) = f_1(x,t)+f_2(x,t)$
Boundary conditions Free end: heavy $\rightarrow$ light spring
Fixed end: light $\rightarrow$ heavy spring
Shape of reflected wave Free end: horizontal reflection only
Fixed end: horizontal reflection, vertical inversion
Shape of transmitted wave Similar to incident wave

Standing waves

Description Equations
Standing wave function $f(x,t) = 2A\sin(kx)\cos(\omega t)$
Standing wave of strings
with two fixed ends
$n$th harmonic, $n$ antinodes, $n+1$ nodes
Wavelength of $n$th harmonic $\lambda_n = \dfrac{2L}{n}$
Frequency of $n$th harmonic $f_n = n\dfrac{c}{2L} = nf_1$
Location of $m$th node of $n$th harmonic $x_m = \dfrac{m\lambda_n}{2} \newline m \in [0, n+1]$

2D and 3D Waves

Quantity Unit Definition
2D intensity $\mathrm{W/m}$ $I = \dfrac{P}{L} = \dfrac{P}{2\pi r}$
3D intensity $\mathrm{W/m^2}$ $I = \dfrac{P}{A} = \dfrac{P}{4\pi r^2}$
Intensity level $\mathrm{dB}$ $\beta = (10 \ \mathrm{dB})\log\left(\dfrac{I}{I_{\text{th}}}\right) \newline I_{\text{th}} = 10^{-12} \ \mathrm{W/m^2}$
Description Equations
Path difference of constructive interference (in phase, at antinodal line) $\delta = n\lambda$
Path difference of destructive interference (out of phase, at nodal line) $\delta = (n - \frac{1}{2})\lambda$
Beat frequency $f_b = \lvert f_1 - f_2 \rvert$
Average frequency $\overline{f} = \frac{1}{2}(f_1 + f_2)$
Wave function of beats $\begin{aligned}y(x, t) &= y_1 + y_2 \cr &= 2A \cos(2\pi \frac{1}{2}f_b t)\sin(2\pi\overline{f}t)\end{aligned}$
Doppler effect $(v_s < c)$
s - source; o - observer; rel to medium
$\dfrac{f_{\mathrm{o}}}{f_{\mathrm{s}}} = \dfrac{c \pm v_{\mathrm{o}}}{c \pm v_{\mathrm{s}}}$
Angle of shock wave $(v_s > c)$ $\sin\theta = \dfrac{c}{v_s}$
Mach number $\footnotesize\text{Mach number} = \dfrac{v_s}{c}$

Ray Optics (Geometric Optics)

Description Equations
Law of reflection $\theta_1 = \theta_2$
Refraction index $n_1 c_1 = n_2 c_2$
Wavelength of light in a new medium $n_1\lambda_1 = n_2\lambda_2$
Snel’s law $n_1\sin\theta_1 = n_2\sin\theta_2$
Critical angle
$(n_2>n_1)$
$\arcsin\left(\dfrac{n_1}{n_2}\right)$
Lens equation
o - object; i - image
$\dfrac{1}{f} = \dfrac{1}{d_\text{o}} + \dfrac{1}{d_\text{i}}$
Magnification $M = \dfrac{h_\text{i}}{h_\text{o}} = -\dfrac{d_\text{i}}{d_\text{o}}$
Radius of curvature (distance of center) of mirror and focal length $R = 2\lvert f \rvert$
Angular magnification $M_\theta = \bigg\lvert\dfrac{\theta_\text{i}}{\theta_\text{o}}\bigg\rvert$
Small-angle (paraxial) approximation of angular magnification $M_\theta = \dfrac{0.25 \ \mathrm{m}}{f}$
Lens strength $d = \dfrac{1 \ \mathrm{m}}{f}$

Lens/mirror equation sign convention

Sign Lens
$f>0 \newline f<0$ converging lens
diverging lens
$d_\text{o}>0 \newline d_\text{o}<0$ object in front of lens
object behind lens
$d_\text{i}>0 \newline d_\text{i}<0$ image behind lens (in front of mirror)
image in front of lens (behind mirror)
$h_\text{i}>0 \newline h_\text{i}<0$ image upright
image inverted
$\lvert M \rvert>1 \newline \lvert M \rvert<1$ image larger than object
image smaller than object

Converging lens images

Object distance $d_\text{o}$ Image distance $\lvert d_\text{i}\rvert$ Image location Upright
Inverted
Magnification Real/Virtual
$(0, f)$ $\lvert d_\text{i} \lvert>f$ Same Upright Magnified Virtual
$f$ $\infty$ - - - Parallel light
$(f, 2f)$ $(2f, \infty)$ Opposite Inverted Magnified Real
$2f$ $2f$ Opposite Inverted Same Real
$(2f, \infty)$ $(f, 2f)$ Opposite Inverted Demagnified Real
$\infty$ $f$ Opposite - - Point

Diverging lens images

Object distance $d_\text{o}$ Image distance $\lvert d_\text{i}\rvert$ Image Location Upright/
Inverted
Magnification Real/Virtual
$(0, \infty)$ $\lvert d_\text{i}\rvert<d_\text{o}$ Same Upright Demagnified Virtual

Wave and Particle Optics

Single slit interference

Description Equations
Variables $n = 1, 2, 3, … \newline a =$ width of the slit
Destructive interference $a\sin\theta = \pm n\lambda$
Location of destructive interference
(only for small angles)
$y_n = \pm n\dfrac{\lambda L}{a}$

Double slit interference

Description Equations
Fringe order $m = 0, 1, 2, … \newline n = 1, 2, 3, …$
Constructive interference $d\sin\theta = \pm m\lambda$
Destructive interference $d\sin\theta = \pm(n-\frac{1}{2})\lambda$
Distance between adjacent maxima $D = \dfrac{L\lambda}{d}$

Multiple slit interference

Description Equations
Variables $m = 0, 1, 2, …$ $\newline N =$ number of slits $\newline k =$ integer not multiple of $N$
Constructive interference (principal maxima) $d\sin\theta = \pm m\lambda$
Destructive interference (minima) $d\sin\theta = \pm\dfrac{k}{N}\lambda$
Minima adjacent to principle maxima $d\sin\theta = \pm \dfrac{mN+1}{N}\lambda$
Phasors $\delta\varphi = 2\pi\dfrac{\delta s}{\lambda}$

Thin-film interference

Note: constructive and destructive interference refers to reflected light, not transmitted light.

Description Equations
Thin-film interference
$t$ - thickness
$m = 0, 1, 2, …$
a - incident medium
b - thin film medium
c - transmitted medium
$\phi = \dfrac{4\pi n_b t\cos\theta_b}{\lambda_a} + \phi_{r2} - \phi_{r1} \newline$ $\phi = \begin{cases} 2m\pi & \small\text{constructive} \cr (2m+1)\pi & \small\text{destructive} \end{cases} \newline$ $\phi_{r} = \begin{cases} 0 & n_i>n_f \cr \pi & n_i<n_f \end{cases}$
Constructive interference if in phase
(If $\pi$-shifted, use destructive condition)
$2t = m\lambda_b = m\dfrac{n_a}{n_b}\lambda_a$
Destructive interference if in phase
(If $\pi$-shifted, use constructive condition)
$2t = (m+\frac{1}{2})\lambda_b = (m+\frac{1}{2})\dfrac{n_a}{n_b}\lambda_a$

Circular aperture

Description Equations
Variables $d$ - diameter of the circular aperture
$f$ - focal distance of the lens
First minimum with circular aperture $\sin\theta = 1.22\dfrac{\lambda}{d}$
Angular resolution
Rayleigh’s criterion of resolution angle
$\theta \approx \sin\theta = 1.22\dfrac{\lambda}{d}$
Linear resolution
Radius of the first minimum by a lens
$y = 1.22\dfrac{\lambda f}{d}$

Wave-particle duality

Description Equations
Bragg’s condition with Bragg angle
X-ray diffraction
$2d\sin\alpha = m\lambda \newline (2d\cos\theta = m\lambda, \alpha = 90^\circ - \theta)$
Energy of a photon $E = h\nu$
Momentum of a photon $p = \dfrac{h\nu}{c}$
Wavelength of a particle $\lambda = \dfrac{h}{p} = \dfrac{h}{mv}$
Photoelectric effect $E_k = h\nu - \Phi = eV_{\text{stop}}$
Stopping potential $V_{\text{stop}} = \dfrac{h\nu}{e} - \dfrac{\Phi}{e}$
Intensity of light $I \propto$ rate of electron emitted from the metal

Fluid Mechanics

Quantity Unit Definition
Density $\mathrm{kg/m^3}$ $\rho = \dfrac{m}{V}$
Pressure $\mathrm{Pa} \newline \mathrm{N/m^2}$ $P = \dfrac{dF}{dA}$
Volumetric flow rate $\mathrm{m^3/s}$ $Q = \dot{V} = \dfrac{dV}{dt}$
Description Equations
Pressure of stationary fluid $P = P_{\text{surf}} + \rho gh$
Pressure of stationary fluid $P_1 + \rho gy_1 = P_2 + \rho gy_2$
Buoyant force $F_b = F_{\text{bottom}} - F_{\text{top}}$
Archimedes' principle $F_b = \rho_f gV_{\text{disp}}$
Volume of displaced fluid of floating object $V_{\text{disp}} = \dfrac{\rho_o}{\rho_f}V_o$
Condition of object buoyancy
o - object; f - fluid
$\begin{cases}\rho_o < \rho_f & \text{float} \cr \rho_o = \rho_f & \text{hang} \cr \rho_o > \rho_f & \text{sink}\end{cases}$
Absolute pressure and gauge pressure $P_{\text{abs}} = P_{\text{atm}} + P_g$
Hydraulic system $P = \dfrac{F_1}{A_1} = \dfrac{F_2}{A_2}$
Continuity equation
Laminar flow of nonviscous fluid
$\begin{aligned}\dot{m}_1 &= \dot{m}_2 \cr \rho_1 Q_1 &= \rho_2 Q_2 \cr \rho_1 A_1 v_1 &= \rho_2 A_2 v_2 \end{aligned}$
Bernoulli’s equation
Laminar flow of incompressible nonviscous fluid
$P_1 + \rho gy_1 + \frac{1}{2}\rho v_1^2 = P_2 + \rho gy_2 + \frac{1}{2}\rho v_2^2$

Entropy

Description Equations
Partition $M = \dfrac{V}{\delta V}$
Microstate (basic state) $\Omega = M^N$
Entropy $S = \ln\Omega = \ln M^N$
Linearity of entropy $S = S_A + S_B \newline \Omega = \Omega_A\Omega_B$
Constant temperature change in entropy $\Delta S = N\ln\left(\dfrac{V_f}{V_i}\right)$
Second law of thermodynamics
in closed system
$\Delta S \begin{cases} >0 & \footnotesize\text{toward equilibrium} \cr = 0 & \footnotesize\text{at equilibrium} \end{cases}$
Equipartition of space $\dfrac{N_A}{V_A} = \dfrac{N_B}{V_B}$
Root-mean-square (rms) speed $v_{\text{rms}} = \sqrt{\overline{v^2}}$
Absolute temperature $\dfrac{1}{k_BT} = \dfrac{dS}{dE_{\text{th}}}$
Equipartition of energy $\dfrac{E_{\text{th}, A}}{N_A} = \dfrac{E_{\text{th}, B}}{N_B}$

Monoatomic ideal gas

Description Equations
Thermal energy $E_{\text{th}} = N\overline{K} = \dfrac{1}{2}Nmv_{\text{rms}}^2$
Pressure $P = \dfrac{2}{3}\dfrac{E_{\text{th}}}{V}$
Thermal energy $E_{\text{th}} = \dfrac{3}{2}Nk_BT$
Average kinetic energy $\overline{K} = \dfrac{3}{2}k_BT$
rms speed $v_{\text{rms}} = \sqrt{\dfrac{3k_BT}{m}}$
Ideal gas law $PV = nRT \newline PV = Nk_BT$
Constant volume change in entropy $\Delta S = \dfrac{3}{2}N\ln\left(\dfrac{T_f}{T_i}\right)$
Total change in entropy $\Delta S = \dfrac{3}{2}N\ln\left(\dfrac{T_f}{T_i}\right) + N\ln\left(\dfrac{V_f}{V_i}\right)$

Thermodynamic Processes

Description Equations
General energy balance $\Delta E = W + Q$
Energy balance of ideal gas $\Delta E_{\text{th}} = W + Q$
Change in thermal energy of ideal gas $\Delta E_{\text{th}} = \dfrac{d}{2} Nk_B \Delta T$
PV Work $W = \displaystyle\int_{V_i}^{V_f} P \ dV$
Entropy change $\Delta S = N \ln\left(\dfrac{V_f}{V_i}\right) + \dfrac{d}{2}N \ln\left(\dfrac{T_f}{T_i}\right)$
Constant volume heat capacity $C_V = \dfrac{Q}{N\Delta T} = \dfrac{d}{2}k_B$
Constant pressure heat capacity $C_P = \dfrac{Q}{N\Delta T} = \left(\dfrac{d}{2}+1\right) k_B$
Heat capacity relationship $C_P = C_V + k_B$
Heat capacity ratio $\gamma = \dfrac{C_P}{C_V} = 1+\dfrac{2}{d}$

Isochoric process

Description Equations
Isochoric process $\Delta V = 0$
Work $W = 0$
Thermal energy and heat $\Delta E_{\text{th}} = Q = \dfrac{d}{2}Nk_B T = NC_V \Delta T$
Entropy $\Delta S = \dfrac{d}{2}N \ln\left(\dfrac{T_f}{T_i}\right) = \dfrac{NC_V}{k_B}\ln\left(\dfrac{T_f}{T_i}\right)$

Isentropic process

Description Equations
Isobaric process (quasistatic adiabatic) $\Delta S = 0$
Heat $Q = 0$
Thermal energy and work $\Delta E_{\text{th}} = W = NC_V \Delta T$
PVT relationship $P_1 V_1^\gamma = P_2 V_2^\gamma \newline T_1 V_1^{\gamma-1} = T_2 V_2^{\gamma-1} \newline P_1^{(1/\gamma)-1} T_1 = P_2^{(1/\gamma)-1} T_2$

Isobaric process

Description Equations
Isobaric process $\Delta P = 0$
Work $W = -P\Delta V = -Nk_B\Delta T$
Heat $Q = NC_P\Delta T$
Thermal energy $\Delta E_{\text{th}} = NC_V\Delta T$
Entropy $\Delta S = \dfrac{NC_P}{k_B}\ln\left(\dfrac{T_f}{T_i}\right)$

Isothermal process

Description Equations
Isothermal process $\Delta T = 0$
Thermal energy $\Delta E_{\text{th}} = 0$
Work and Heat $Q=-W$
Work $W = -Nk_BT\ln\left(\dfrac{V_f}{V_i}\right)$
Heat $Q = Nk_BT\ln\left(\dfrac{V_f}{V_i}\right)$
Entropy $\Delta S = N\ln\left(\dfrac{V_f}{V_i}\right) = \dfrac{Q}{k_B T}$

Degradation of Energy

Description Equations
Complete cycle of steady device $\Delta E = 0 \newline W = Q_{\text{out}} - Q_{\text{in}} \newline \Delta S_{\text{sys}} = 0 \newline \Delta S_{\text{surr}} \ge 0$
Steady device thermally transferring energy to lower temperature $\Delta S_{\text{surr}} = \dfrac{Q_{\text{out}}}{k_B}\left(\dfrac{1}{T_{\text{out}}} - \dfrac{1}{T_{\text{in}}}\right)$
Steady device thermally transferring energy to higher temperature $\Delta S_{\text{surr}} = - \dfrac{Q_{\text{out}}}{k_B}\left(\dfrac{1}{T_{\text{out}}} - \dfrac{1}{T_{\text{in}}}\right)$
Steady device converting mechanical energy to thermal energy $\Delta S_{\text{surr}} = \dfrac{Q_{\text{out}}}{k_B T_{\text{out}}}$
Reversible heat engine $\dfrac{Q_{\text{out}}}{Q_{\text{in}}} = \dfrac{T_{\text{out}}}{T_{\text{in}}} = \dfrac{T_{\text{low}}}{T_{\text{high}}}$
Energy balance $Q_{\text{in}} + W_{\text{in}} = Q_{\text{out}} + W_{\text{out}}$
Efficiency of heat engine $\eta = -\dfrac{W_{\text{out}}}{Q_{\text{in}}} = 1-\dfrac{Q_{\text{out}}}{Q_{\text{in}}}$
Maximum efficiency of reversible heat engine $\eta_{\mathrm{max}} = 1-\dfrac{T_{\text{low}}}{T_{\text{high}}}$
Coefficient of performance of heating $\mathrm{COP_{heating}} = \dfrac{Q_{\text{out}}}{W} = \dfrac{1}{1-Q_{\text{in}}/Q_{\text{out}}}$
Maximum coefficient of performance of heating (reversible heat pump) $\mathrm{COP_{heating, max}} = \dfrac{1}{1-T_{\text{in}}/T_{\text{out}}}$
Coefficient of performance of cooling $\mathrm{COP_{cooling}} = \dfrac{Q_{\text{in}}}{W} = \mathrm{COP_{heating}} - 1$
Maximum coefficient of performance of cooling (reversible heat pump) $\mathrm{COP_{cooling, max}} = \dfrac{T_{\text{in}}}{T_{\text{out}}-T_{\text{in}}}$