Contents

PHYS 122 Electromagnetism

Electrical Charge and Electric Field

Quantity Unit Definition
Electrical field
(point charge)
$\mathrm{N/C} \newline \mathrm{(V/m)}$ $\vec{E}_{s} = \dfrac{\vec{F}_{0}}{q_{0}} = \dfrac{1}{4\pi\varepsilon_{0}} \dfrac{q}{r^{2}} \hat{r}$
Linear charge density $\mathrm{C/m}$ $\lambda = \dfrac{dQ}{dl}$
Surface charge density $\mathrm{C/m^{2}}$ $\sigma = \dfrac{dQ}{dA}$
Volume charge density $\mathrm{C/m^{3}}$ $\rho = \dfrac{dQ}{dV}$
Electric dipole moment
(direction from - to +)
$\mathrm{C\cdot m}$ $\vec{p} = q\vec{d}$
Induced dipole moment
(direction from - to +)
$\mathrm{C\cdot m}$ $\vec{p} = \alpha\vec{E}$
Description Equations
Coulomb’s law $F = \dfrac{1}{4\pi\varepsilon_{0}} \dfrac{q_{1}q_{2}}{r^{2}} \hat{r}$
Force on test charge by an electric field $\vec{F}_0 = q_{0} \vec{E}$
Superposition of electric forces $\vec{F} = \sum\limits_{i} \vec{F}_{i}$
Superposition of electric fields $\vec{E} = \sum\limits_{i} \vec{E}_{i}$
Torque on an electric dipole in an uniform electrical field $\vec{\tau} = \vec{p} \times \vec{E}$
Potential energy of an electric dipole in an uniform electric field $U = -\vec{p}\cdot\vec{E}$
Electric field of test charge on x axis caused by dipole at origin oriented in + y direction $E_{x} = 0 \newline E_{y} = -\dfrac{kp}{|x|^{3}}$
Electric field of test charge on y axis caused by dipole at origin oriented in + y direction $E_{x} = 0 \newline E_{y} = \dfrac{2kp}{|y|^{3}}$

Gauss’s Law

Quantity Unit Definition
Electric flux through a surface $\mathrm{N \cdot m^{2}/C}$
$\mathrm{(V\cdot m)}$
$\Phi_{E} = \displaystyle\int \vec{E} \cdot d\vec{A}$
Description Equations
Electric flux of a uniform electric field $\Phi_{E} = \vec{E} \cdot \vec{A}$
Electric flux of a nonuniform electric field $\Phi_{E} = \displaystyle\int \vec{E} \cdot d\vec{A} = \displaystyle\int E \cos\theta \ dA$
Gauss’s law
Electric flux through a closed surface
$\begin{aligned}\Phi_{E} &= \displaystyle\oint \vec{E} \cdot d\vec{A} \cr &= \displaystyle\oint E \cos\theta \ dA = \dfrac{Q}{\varepsilon_{0}}\end{aligned}$

Electric field of uniform spherical charge distributions

  • charged = uniformly charged throughout (insulating)
  • conducting = charge only on surface
Charge Distribution Point in Electric Field Electric Field Magnitude
Point charge - $E = \dfrac{1}{4\pi\varepsilon_{0}}\dfrac{q}{r^{2}}$
Solid conducting sphere
Hollow charged sphere
Outside sphere, $r>R$ $E = \dfrac{1}{4\pi\varepsilon_{0}}\dfrac{q}{r^{2}}$
Solid conducting sphere
Hollow charged sphere
Inside sphere, $r<R$ $E = 0$
Solid charged sphere Outside sphere, $r>R$ $E = \dfrac{1}{4\pi\varepsilon_{0}}\dfrac{q}{r^{2}}$
Solid charged sphere Inside sphere, $r<R$ $E = \dfrac{1}{4\pi\varepsilon_{0}}\dfrac{r}{R^{3}}q$

Electric field of uniform cylindrical charge distributions

Charge Distribution Point in Electric Field Electric Field Magnitude
$\infin$ wire/rod - $E = \dfrac{1}{2\pi\varepsilon_{0}}\dfrac{\lambda}{r} = \dfrac{2k\lambda}{r}$
$\infin$ solid conducting cylinder
$\infin$ hallow charged cylinder
Outside cylinder, $r>R$ $E = \dfrac{1}{2\pi\varepsilon_{0}}\dfrac{\lambda}{r} = \dfrac{2k\lambda}{r}$
$\infin$ solid conducting cylinder
$\infin$ hallow charged cylinder
Inside cylinder, $r<R$ $E = 0$
$\infin$ solid charged cylinder Outside cylinder, $r>R$ $E = \dfrac{1}{2\pi\varepsilon_{0}}\dfrac{\lambda}{r} = \dfrac{2k\lambda}{r}$
$\infin$ solid charged cylinder Inside cylinder, $r<R$ $E = \dfrac{1}{2\pi\varepsilon_{0}}\dfrac{r}{R^{2}} \lambda = \dfrac{2k\lambda r}{R^{2}}$

Electric field of uniform planar charge distributions

Charge Distribution Point in Electric Field Electric Field Magnitude
$\infin$ charged sheet/plate - $E = \dfrac{\sigma}{2\varepsilon_{0}}$
$\infin$ conducting sheet/plate - $E = \dfrac{\sigma}{\varepsilon_{0}} = \dfrac{q}{2\varepsilon_{0}A}$
($q$ spreads at each surface)
Two oppositely charged conducting plates Between plates $E = \dfrac{\sigma}{\varepsilon_{0}}$
Charged conductor At surface $E = \dfrac{\sigma}{\varepsilon_{0}}$

Electric Potential

Quantity Unit Definition
Electric potential energy
(point charge)
(choose $U = 0$ at $\infty$)
$\mathrm{J}$ $U = \dfrac{1}{4\pi\varepsilon_{0}} \dfrac{q_{s}q_{0}}{r}$
Electric potential
(point charge)
(choose $V = 0$ at $\infty$)
$\mathrm{V}$
$\mathrm{(J/C)}$
$V = \dfrac{U}{q_{0}} = \dfrac{1}{4\pi\varepsilon_{0}} \dfrac{q_{s}}{r}$
Description Equations
Electric potential energy of a test charge due to many source charges $U = \dfrac{q_{0}}{4\pi\varepsilon_{0}} \sum\limits_{i} \dfrac{q_{i}}{r_{i}}$
Total electric potential energy of all source charges $U = \dfrac{1}{4\pi\varepsilon_{0}} \sum\limits_{i<j} \dfrac{q_{i}q_{j}}{r_{ij}}$
Electric potential due to many source charges $V = \dfrac{1}{4\pi\varepsilon_{0}} \sum\limits_{i} \dfrac{q_{i}}{r_{i}}$
Electric potential due to continuous distribution of charges $V = \dfrac{1}{4\pi\varepsilon_{0}} \displaystyle\int \dfrac{dq}{r}$
Electric potential and potential energy of point charges $U = q_{2}V_{1}$
Work by electric force and electric field $W_{a \to b} = \displaystyle\int_{a}^{b} \vec{F} \cdot d\vec{l} = q \int_{a}^{b} \vec{E} \cdot d\vec{l}$
Work by electric force on a closed path $W_{a \to b \to a} = q \displaystyle\oint \vec{E} \cdot d\vec{l} = 0$
Work by electric force and change in potential energy $W_{a \to b} = -\Delta U$
Potential difference $V_{ab} = V_{b} - V_{a}$
Potential difference between terminals of battery $V_{\mathrm{batt}} = V_{-+} = V_{+} - V_{-}$
Potential difference and work, potential energy difference $V_{ab} = \dfrac{\Delta U}{q_{0}} = -\dfrac{W_{a \to b}}{q_{0}}$
Potential difference and electric field $V_{ab} = -\displaystyle\int_{a}^{b} \vec{E} \cdot d\vec{l} = -\displaystyle\int E \cos\theta \ dl$
Electric field and potential gradient $\begin{aligned}\vec{E} &= -\vec{\nabla}V \cr &= \left<-\dfrac{\partial V}{\partial x}, -\dfrac{\partial V}{\partial y}, -\dfrac{\partial V}{\partial z} \right>\end{aligned}$

Capacitance and Dielectrics

Quantity Unit Definition
Capacitance
(in vacuum)
$\mathrm{F} \newline \mathrm{(C/V = C^{2}/J)}$ $C = \dfrac{Q}{V_{-+}} = \dfrac{Q}{V_{+} - V_{-}}$
Electric energy density
(in vacuum)
$\mathrm{J/m^{3}}$ $u = \dfrac{U}{Ad} = \dfrac{1}{2} \varepsilon_{0}E^{2}$
Description Equations
Capacitance of a parallel-plate capacitor in vacuum $C = \dfrac{Q}{V_{-+}} = \varepsilon_{0} \dfrac{A}{d}$
Potential energy stored in a charged capacitor (define $U_{\mathrm{uncharged}} \equiv 0)$ $U = \dfrac{Q^{2}}{2C} = \dfrac{1}{2}CV^{2} = \dfrac{1}{2}QV$
Electric energy density in vacuum $u = \dfrac{U}{Ad} = \dfrac{1}{2} \varepsilon_{0}E^{2}$
Dielectric constant $\kappa = \dfrac{C}{C_{0}} = \dfrac{V_{0}}{V} = \dfrac{E_{0}}{E}$
Induced surface charge density on a dielectric in an isolated capacitor $\sigma_{\mathrm{induced}} = \sigma_{\mathrm{bound}} \newline \sigma_{0} = \sigma_{\mathrm{free}} \newline \sigma_{\mathrm{induced}} = \sigma_{0} \left(1 - \dfrac{1}{\kappa} \right)$
Permittivity of a dielectric $\varepsilon = \kappa \varepsilon_{0}$
Capacitance of a parallel-plate capacitor with dielectric between plates $C = \kappa C_{0} = \kappa\varepsilon_{0}\dfrac{A}{d} = \varepsilon\dfrac{A}{d}$
Electric energy density in a dielectric $u = \dfrac{1}{2}\kappa\varepsilon_{0}E^{2} = \dfrac{1}{2}\varepsilon E^{2}$
Gauss’s law in dielectrics $\displaystyle\oint \vec{E}\cdot d\vec{A} = \dfrac{q_{\mathrm{free, enc}}}{\kappa\varepsilon_{0}}$

Current, Resistance, and emf

Quantity Unit Definition
Current $\mathrm{A} \newline \mathrm{(C/s)}$ $I = \dfrac{dQ}{dt}$
Current density
(per unit cross-section area)
$\mathrm{A/m^{2}}$ $\vec{J} = nq\vec{v}_d \newline J = \dfrac{I}{A} = n \lvert q \rvert v_{d}$
Conductivity
(intrinsic to a material)
$\mathrm{(\Omega\cdot m)^{-1}} \newline \mathrm{A/(V\cdot m)}$ $\sigma = \dfrac{J}{E}$
Resistivity
(intrinsic to a material)
$\mathrm{\Omega\cdot m}$ $\rho = \dfrac{E}{J}$
Resistance $\mathrm{\Omega}$ $R = \dfrac{V}{I} = \dfrac{\rho L}{A} = \dfrac{L}{\sigma A}$
Description Equations
Drift velocity of charge carrier $\vec{v}_{d} = -\dfrac{q\vec{E}}{m}\tau$
Current and conductor properties $I = \dfrac{dQ}{dt} = n \lvert q \rvert v_{d}A = JA$
Current density
(per unit cross-section area)
$\vec{J} = nq\vec{v}_d \newline J = \dfrac{I}{A} = n \lvert q \rvert v_{d} = \dfrac{nq^{2}\tau}{m_{q}}E$
Conductivity
(intrinsic to a material)
$\sigma = \dfrac{J}{E} = \dfrac{nq^{2}\tau}{m_{q}}$
Temperature dependence of resistivity $\rho(T) = \rho_{0} (1 + \alpha (T-T_{0}))$
Temperature dependence of resistance $R(T) = R_{0} (1 + \alpha (T-T_{0}))$

Direct-Current (DC) Circuits

Circuit analysis

Description Equations
Circuit elements in series
$\lvert Q \rvert, I$ - Equal
$V, R$ - Add
$C$ - Reciprocal
$\lvert Q \rvert = \lvert Q_{1} \rvert = … = \lvert Q_{i} \rvert \newline I = I_{1} = … = I_{i} \newline V = \sum\limits_{i} V_{i} \newline R = \sum\limits_{i} R_{i} \newline \dfrac{1}{C} = \sum\limits_{i} \dfrac{1}{C_{i}}$
Circuit elements in parallel
$V$ - Equal
$Q, I, C$ - Add
$R$ - Reciprocal
$V = V_{1} = … = V_{i} \newline Q = \sum\limits_{i} Q_{i} \newline I = \sum\limits_{i} I_{i} \newline C = \sum\limits_{i} C_{i} \newline \dfrac{1}{R} = \sum\limits_{i} \dfrac{1}{R_{i}}$
Algebra of reciprocal values of two elements $\dfrac{1}{A} = \dfrac{1}{A_{1}} + \dfrac{1}{A_{2}} \Rightarrow A = \dfrac{A_{1}A_{2}}{A_{1} + A_{2}}$
Kirchhoff’s junction rule
(conservation of charge)
$\sum I = 0$
Kirchhoff’s loop rule
(conservation of energy)
$\sum V = 0$
Battery $(- \to +)$ $+\mathcal{E}$
Resistor (along reference direction) $-IR$
Capacitor $(- \to +)$ $+\dfrac{q(t)}{C}$

Ohm’s law and power

Description Equations
Ohm’s law $V = IR$
Potential difference of source with internal resistance $V_{-+} = \mathcal{E} - Ir = IR$
Current of source with internal resistance $I = \dfrac{\mathcal{E}}{R + r}$
Power delivered to or extracted from a circuit element $P = IV$
Power delivered to a resistor
(Note: both $I$ and $V$ depend on $R$)
$P = IV = I^{2}R = \dfrac{V^{2}}{R}$
Power output of a source $P = I\mathcal{E} = IV + I^{2}r = I^{2}(R+r)$

R-C circuit

Description Equations
Time constant $\tau = RC$
Charge when charging capacitors $\begin{aligned}q(t) &= C\mathcal{E} (1-e^{-t/RC}) \cr &= Q_{f}(1-e^{-t/RC})\end{aligned}$
Current when charging capacitors $i(t) = \dfrac{\mathcal{E}}{R}e^{-t/RC} = I_{0}e^{-t/RC}$
Charge when discharging capacitors $q(t) = Q_{0} e^{-t/RC}$
Current when discharging capacitors $i(t) = -\dfrac{Q_{0}}{RC}e^{-t/RC} = I_{0}e^{-t/RC}$
Power of battery in R-C circuit $P = i\mathcal{E} = i^{2}R + \dfrac{iq}{C}$
Total energy stored in capacitor $U = \dfrac{1}{2}QV = \dfrac{1}{2}Q_{f}\mathcal{E}$

Magnetic Force and Motion

Quantity Unit Definition
Magnetic force $\mathrm{N}$ $\begin{aligned}\vec{F} &= q\vec{v}\times\vec{B} \cr &= \lvert q \rvert v B \sin\theta\end{aligned}$
Magnetic flux through a surface $\mathrm{Wb} \newline (\mathrm{T\cdot m^{2}})$ $\Phi_{B} = \displaystyle\int \vec{B}\cdot d\vec{A}$
Magnetic dipole moment
(direction from S to N)
$\mathrm{A\cdot m^{2}} \newline \mathrm{J/T}$ $\vec{\mu} = I\vec{A}$

Magnetic interactions of charged particles

Description Equations
Magnetic force on a charged particle $\vec{F} = q\vec{v}\times\vec{B} = \lvert q \rvert v B \sin\theta$
Radius of a circular orbit in a magnetic field
(charge where $v\perp B$)
$R = \dfrac{mv}{\lvert q \rvert B}$
Angular speed (frequency) of circular motion $\omega = 2\pi f = \dfrac{2\pi}{T} = \dfrac{\lvert q \rvert B}{m}$
Frequency of circular motion $f = \dfrac{1}{T} = \dfrac{\omega}{2\pi} = \dfrac{\lvert q \rvert B}{2\pi m}$
Period of circular motion $T = \dfrac{1}{f} = \dfrac{2\pi}{\omega} = \dfrac{2\pi m}{\lvert q \rvert B}$
Velocity selector $v = \dfrac{E}{B}$
Thompson’s experiment $v = \sqrt{\dfrac{2qV}{m}} \newline \dfrac{q}{m} = \dfrac{E^{2}}{2VB^{2}}$
Mass spectrometers $m = \dfrac{\vert q \rvert B^{2}R}{E}$

Magnetic interactions of current-carrying conductor

Description Equations
Magnetic force on a straight wire segment $\vec{F} = I\vec{l}\times\vec{B}$
Magnetic force on an infinitesimal wire segment $d\vec{F} = I \ d\vec{l}\times\vec{B}$
Magnetic dipole moment $\vec{\mu} = I\vec{A}$
Magnetic torque on a current loop $\vec{\tau} = \vec{\mu}\times\vec{B} = IAB\sin\theta$
Magnetic torque on a solenoid $\vec{\tau} = N\vec{\mu}\times\vec{B} = NIAB\sin\theta$
Potential energy for a magnetic dipole in B field $U = -\vec{\mu}\cdot\vec{B} = -\mu B \cos\theta$

Magnetic flux and other effects

Description Equations
Magnetic flux through a surface $\Phi_{B} = \displaystyle\int \vec{B}\cdot d\vec{A}$
Gauss’s law for magnetism $\displaystyle\oint \vec{B}\cdot d\vec{A} = 0$
Electromagnetic (Lorentz) force $\vec{F} = q(\vec{E} + \vec{v}\times\vec{B})$
Hall effect $nq = \dfrac{-J_{x}B_{y}}{E_{z}}$

Magnetic Field

Quantity Unit Definition
Magnetic field $\mathrm{T} \newline \mathrm{N/(A\cdot m)} \newline 1\mathrm{G} = 10^{-4}\mathrm{T}$ $\vec{B} = \dfrac{\mu_{0}}{4\pi}\displaystyle\int\dfrac{I d\vec{l}\times\hat{r}}{r^{2}}$
Description Equations
Ampere’s law $\displaystyle\oint \vec{B}\cdot d\vec{l} = \mu_{0}I$
Magnetic field of a point charge $\vec{B} = \dfrac{\mu_{0}}{4\pi}\dfrac{q \vec{v}\times\hat{r}}{r^{2}}$
Biot-Savart law
Magnetic field of infinitesimal length of wire
$d\vec{B} = \dfrac{\mu_{0}}{4\pi}\dfrac{I d\vec{l}\times\hat{r}}{r^{2}}$
Force on two $\infin$ parallel wires per unit length $\vec{F} = q\vec{v}\times\vec{B}$
$\dfrac{F}{l} = \dfrac{\mu_{0}I_{1}I_{2}}{2\pi d}$
Force on two moving charges $\vec{F} = I\vec{l}\times\vec{B}$
$\vec{F}_{1 \to 2} = \dfrac{\mu_{0}}{4\pi}\dfrac{q_{1}q_{2}}{r}\vec{v}_2\times\vec{v}_{1}\times\hat{r}$

Magnetic field of linear conductors

Conductor Form Magnetic Field Magnitude
$\infin$ straight wire $B = \dfrac{\mu_{0}I}{2\pi r}$
$\infin$ current-conducting plane $B = \dfrac{1}{2}\mu_{0}K$

Magnetic field of circular conductors

Conductor Form Magnetic Field Magnitude
On the axis of circular wire loop $B_{x} = \dfrac{\mu_{0}IR^{2}}{2(x^{2}+R^{2})^{3/2}}$
On the axis of N circular wire loops $B_{x} = \dfrac{N\mu_{0}IR^{2}}{2(x^{2}+R^{2})^{3/2}} = \dfrac{\mu_{0}\mu}{2\pi(x^{2}+R^{2})^{3/2}}$
At the center of N circular wire loops $B_{x} = \dfrac{N\mu_{0}I}{2a}$
At the center of a circular arc $B = \dfrac{\mu_{0}I\theta}{4\pi r}$
Inside cylindrical conductor $B = \dfrac{\mu_{0}I}{2\pi}\dfrac{r}{R^{2}} \ \ (r<R)$
Outside cylindrical conductor $B = \dfrac{\mu_{0}I}{2\pi r} \ \ (r>R)$
Inside $\infin$ solenoid $B = N\mu_{0}I$
Inside finite length solenoid $B = \dfrac{N\mu_{0}I}{l}$
Inside toroid $B = \dfrac{N\mu_{0}I}{2\pi r}$

Changing Magnetic Field (Induction)

Quantity Unit Definition
Inductance $\mathrm{H} \newline \mathrm{V \cdot s/A}$ $L = \dfrac{\Phi_{B}}{i}$
Description Equations
Faraday’s law $\mathcal{E} = -\dfrac{d\Phi_{B}}{dt}$
Motional emf $\mathcal{E} = \displaystyle\oint (\vec{v}\times\vec{B})\cdot d\vec{l} \newline \mathcal{E}= vBl$
Faraday’s law for stationary integration path
(Induced electric field and magnetic flux)
$\displaystyle\oint\vec{E}\cdot d\vec{l} = -\dfrac{d\Phi_{B}}{dt}$
Inductance of a solenoid $L = \dfrac{\mu_{0}N^{2}A}{l}$
Inductance as amount of change in current associated with change in magnetic flux $\begin{aligned}\mathcal{E} &= -L\dfrac{di}{dt} \cr \dfrac{d\Phi_{B}}{dt} &= L\dfrac{di}{dt}\end{aligned}$
Magnetic potential energy $U = \dfrac{1}{2}LI^{2}$
Magnetic energy density $u = \dfrac{1}{2}\dfrac{B^{2}}{\mu_{0}}$

Changing Electric Field

Description Equations
Conduction current $i_{C} = \dfrac{dq}{dt} = \varepsilon_{0}\dfrac{d\Phi_{E}}{dt}$
Displacement current $i_{D} = \varepsilon_{0}\dfrac{d\Phi_{E}}{dt}$
Maxwell-Ampere’s law $\begin{aligned}\displaystyle\oint\vec{B}\cdot d\vec{l} &= \mu_{0}(i_{C}+i_{D}) \cr &= \mu_{0}i_{C} + \mu_{0}\varepsilon_{0}\dfrac{d\Phi_{E}}{dt}\end{aligned}$
Magnetic field inside a circular capacitor $B=\dfrac{\mu_{0}Ir}{2\pi R^{2}} \ (r<R) \newline B=\dfrac{\mu_{0}I}{2\pi R} \ (r \ge R)$
Maxwell’s Equations $\displaystyle\oint\vec{E}\cdot d\vec{A} = \dfrac{Q}{\varepsilon_{0}} \newline \oint\vec{B}\cdot d\vec{A} = 0 \newline \oint\vec{E}\cdot d\vec{l} = -\dfrac{d\Phi_{B}}{dt} \newline \oint\vec{B}\cdot d\vec{l} = \mu_{0}\left( i_{C} + \varepsilon_{0}\dfrac{d\Phi_{E}}{dt} \right)$
Maxwell’s equation in empty free space $\oint\vec{E}\cdot d\vec{A} = 0 \newline \oint\vec{B}\cdot d\vec{A} = 0 \newline \oint\vec{E}\cdot d\vec{l} = -\frac{d\Phi_{B}}{dt} \newline \oint\vec{B}\cdot d\vec{l} = \mu_{0}\varepsilon_{0}\frac{d\Phi_{E}}{dt}$

Alternating-Current (AC) Circuits

Quantity Unit Definition
Capacitive reactance $\mathrm{\Omega}$ $X_{C} = \dfrac{1}{\omega C}$
Inductive reactance $\mathrm{\Omega}$ $X_{L} = \omega L$
Impedance $\mathrm{\Omega}$ $Z = \dfrac{\mathcal{E}_{\mathrm{max}}}{I}$
Description Equations
AC source in AC circuit $\mathcal{E} = \mathcal{E}_{\mathrm{max}}\sin(\omega t)$
Angular frequency of oscillation $\omega = 2\pi f$
Resistor in AC circuit
(i and v in phase)
$v_{R} = \mathcal{E}_{\mathrm{max}}\sin(\omega t) \newline i = I\sin(\omega t) \newline V_{R} = IR$
Capacitor in AC circuit
(i leads v by 90 deg)
$v_{C} = \mathcal{E}_{\mathrm{max}}\sin(\omega t) \newline i = I\sin(\omega t + 90^{\circ}) \newline V_{C} = IX_{C} = \dfrac{I}{\omega C}$
Inductor in AC circuit
(i lags v by 90 deg)
$v_{L} = \mathcal{E}_{\mathrm{max}}\sin(\omega t) \newline i = I\sin(\omega t - 90^{\circ}) \newline V_{L} = IX_{L} = I\omega L$
RC series AC circuit $Z_{RC} = \sqrt{R^{2} + 1/(\omega C)^{2}} \newline \tan\phi = -\dfrac{V_{C}}{V_{R}} = -\dfrac{1}{\omega RC}$
RLC series AC circuit $Z_{RLC} = \sqrt{R^{2} + (\omega L-1/\omega C)^{2}} \newline \tan\phi = \dfrac{V_{L} - V_{C}}{V_{R}} = \dfrac{\omega L - 1/\omega C}{R}$
RC filters $V_{C} = V_{R} \newline \omega_{\mathrm{cutoff}} = \dfrac{1}{RC}$
High pass measures R
Low pass measures C
RL filters $V_{R} = V_{L} \newline \omega_{\mathrm{cutoff}} = \dfrac{R}{L}$
High pass measures L
Low pass measures R
Trigonometric identities $\sin\theta = \cos(\frac{\pi}{2} - \theta) \newline \cos\theta = \sin(\frac{\pi}{2} - \theta) \newline \sin(-\theta) = -\sin\theta \newline \cos(-\theta) = \cos\theta$

Special Relativity

Description Equations
Lorentz factor $\gamma = \dfrac{1}{\sqrt{1-v^{2}/c^{2}}}$
Time dilation $\Delta t_{v} = \gamma\Delta t_{\mathrm{proper}}$
Length contraction $l_{v} = \dfrac{l_{\mathrm{proper}}}{\gamma}$
Space-time interval $s^{2} = (c\Delta t)^{2} - (\Delta x)^{2}$
Lorentz transformation $x' = \gamma(x - ut) \newline y' = y \newline z' = z \newline t' = \gamma (t-ux/c^{2}) \newline v_{x}' = \dfrac{v_{x} - u}{1-uv_{x}/c^{2}}$
Relativistic inertia $m_{v} = \gamma m$
Relativistic momentum $p = \gamma mv$
Relativistic kinetic energy $K = (\gamma - 1)mc^{2}$
Internal (rest) energy $E_{\mathrm{int}} = mc^{2}$
Total energy $E = K + E_{\mathrm{int}} \newline E^{2} = (mc^{2})^{2} + (pc)^{2}$

Appendix: List of Constants

Quantity Value
Coulomb constant $k = 8.99\times 10^{9} \ \mathrm{N\cdot m^{2}/C^{2}}$
Electric constant $\varepsilon_{0} = 8.85\times 10^{-12} \ \mathrm{F/m}$
Magnetic constant $\mu_{0} = 1.26\times 10^{-6} \ \mathrm{H/m}$
Elementary charge $q_{e} = 1.60\times 10^{-19} \ \mathrm{C}$
Mass of electron $m_{e} = 9.11\times 10^{-31} \ \mathrm{kg}$
Speed of light in vacuum $c = 3.00\times 10^{8} \ \mathrm{m/s}$