PHYS 122 Electromagnetism

Contents
Quantity Unit Definition
Electrical field
(point charge)
N/C(V/m)\mathrm{N/C} \newline \mathrm{(V/m)} Es=F0q0=14πε0qr2r^\vec{E}_{s} = \dfrac{\vec{F}_{0}}{q_{0}} = \dfrac{1}{4\pi\varepsilon_{0}} \dfrac{q}{r^{2}} \hat{r}
Linear charge density C/m\mathrm{C/m} λ=dQdl\lambda = \dfrac{dQ}{dl}
Surface charge density C/m2\mathrm{C/m^{2}} σ=dQdA\sigma = \dfrac{dQ}{dA}
Volume charge density C/m3\mathrm{C/m^{3}} ρ=dQdV\rho = \dfrac{dQ}{dV}
Electric dipole moment
(direction from - to +)
Cm\mathrm{C\cdot m} p=qd\vec{p} = q\vec{d}
Induced dipole moment
(direction from - to +)
Cm\mathrm{C\cdot m} p=αE\vec{p} = \alpha\vec{E}
Description Equations
Coulomb’s law F=14πε0q1q2r2r^F = \dfrac{1}{4\pi\varepsilon_{0}} \dfrac{q_{1}q_{2}}{r^{2}} \hat{r}
Force on test charge by an electric field F0=q0E\vec{F}_0 = q_{0} \vec{E}
Superposition of electric forces F=iFi\vec{F} = \sum\limits_{i} \vec{F}_{i}
Superposition of electric fields E=iEi\vec{E} = \sum\limits_{i} \vec{E}_{i}
Torque on an electric dipole in an uniform electrical field τ=p×E\vec{\tau} = \vec{p} \times \vec{E}
Potential energy of an electric dipole in an uniform electric field U=pEU = -\vec{p}\cdot\vec{E}
Electric field of test charge on x axis caused by dipole at origin oriented in + y direction Ex=0Ey=kpx3E_{x} = 0 \newline E_{y} = -\dfrac{kp}{|x|^{3}}
Electric field of test charge on y axis caused by dipole at origin oriented in + y direction Ex=0Ey=2kpy3E_{x} = 0 \newline E_{y} = \dfrac{2kp}{|y|^{3}}
Quantity Unit Definition
Electric flux through a surface Nm2/C\mathrm{N \cdot m^{2}/C}
(Vm)\mathrm{(V\cdot m)}
ΦE=EdA\Phi_{E} = \displaystyle\int \vec{E} \cdot d\vec{A}
Description Equations
Electric flux of a uniform electric field ΦE=EA\Phi_{E} = \vec{E} \cdot \vec{A}
Electric flux of a nonuniform electric field ΦE=EdA=Ecosθ dA\Phi_{E} = \displaystyle\int \vec{E} \cdot d\vec{A} = \displaystyle\int E \cos\theta \ dA
Gauss’s law
Electric flux through a closed surface
ΦE=EdA=Ecosθ dA=Qε0\begin{aligned}\Phi_{E} &= \displaystyle\oint \vec{E} \cdot d\vec{A} \cr &= \displaystyle\oint E \cos\theta \ dA = \dfrac{Q}{\varepsilon_{0}}\end{aligned}
  • charged = uniformly charged throughout (insulating)
  • conducting = charge only on surface
Charge Distribution Point in Electric Field Electric Field Magnitude
Point charge - E=14πε0qr2E = \dfrac{1}{4\pi\varepsilon_{0}}\dfrac{q}{r^{2}}
Solid conducting sphere
Hollow charged sphere
Outside sphere, r>Rr>R E=14πε0qr2E = \dfrac{1}{4\pi\varepsilon_{0}}\dfrac{q}{r^{2}}
Solid conducting sphere
Hollow charged sphere
Inside sphere, r<Rr<R E=0E = 0
Solid charged sphere Outside sphere, r>Rr>R E=14πε0qr2E = \dfrac{1}{4\pi\varepsilon_{0}}\dfrac{q}{r^{2}}
Solid charged sphere Inside sphere, r<Rr<R E=14πε0rR3qE = \dfrac{1}{4\pi\varepsilon_{0}}\dfrac{r}{R^{3}}q
Charge Distribution Point in Electric Field Electric Field Magnitude
\infin wire/rod - E=12πε0λr=2kλrE = \dfrac{1}{2\pi\varepsilon_{0}}\dfrac{\lambda}{r} = \dfrac{2k\lambda}{r}
\infin solid conducting cylinder
\infin hallow charged cylinder
Outside cylinder, r>Rr>R E=12πε0λr=2kλrE = \dfrac{1}{2\pi\varepsilon_{0}}\dfrac{\lambda}{r} = \dfrac{2k\lambda}{r}
\infin solid conducting cylinder
\infin hallow charged cylinder
Inside cylinder, r<Rr<R E=0E = 0
\infin solid charged cylinder Outside cylinder, r>Rr>R E=12πε0λr=2kλrE = \dfrac{1}{2\pi\varepsilon_{0}}\dfrac{\lambda}{r} = \dfrac{2k\lambda}{r}
\infin solid charged cylinder Inside cylinder, r<Rr<R E=12πε0rR2λ=2kλrR2E = \dfrac{1}{2\pi\varepsilon_{0}}\dfrac{r}{R^{2}} \lambda = \dfrac{2k\lambda r}{R^{2}}
Charge Distribution Point in Electric Field Electric Field Magnitude
\infin charged sheet/plate - E=σ2ε0E = \dfrac{\sigma}{2\varepsilon_{0}}
\infin conducting sheet/plate - E=σε0=q2ε0AE = \dfrac{\sigma}{\varepsilon_{0}} = \dfrac{q}{2\varepsilon_{0}A}
(qq spreads at each surface)
Two oppositely charged conducting plates Between plates E=σε0E = \dfrac{\sigma}{\varepsilon_{0}}
Charged conductor At surface E=σε0E = \dfrac{\sigma}{\varepsilon_{0}}
Quantity Unit Definition
Electric potential energy
(point charge)
(choose U=0U = 0 at \infty)
J\mathrm{J} U=14πε0qsq0rU = \dfrac{1}{4\pi\varepsilon_{0}} \dfrac{q_{s}q_{0}}{r}
Electric potential
(point charge)
(choose V=0V = 0 at \infty)
V\mathrm{V}
(J/C)\mathrm{(J/C)}
V=Uq0=14πε0qsrV = \dfrac{U}{q_{0}} = \dfrac{1}{4\pi\varepsilon_{0}} \dfrac{q_{s}}{r}
Description Equations
Electric potential energy of a test charge due to many source charges U=q04πε0iqiriU = \dfrac{q_{0}}{4\pi\varepsilon_{0}} \sum\limits_{i} \dfrac{q_{i}}{r_{i}}
Total electric potential energy of all source charges U=14πε0i<jqiqjrijU = \dfrac{1}{4\pi\varepsilon_{0}} \sum\limits_{i<j} \dfrac{q_{i}q_{j}}{r_{ij}}
Electric potential due to many source charges V=14πε0iqiriV = \dfrac{1}{4\pi\varepsilon_{0}} \sum\limits_{i} \dfrac{q_{i}}{r_{i}}
Electric potential due to continuous distribution of charges V=14πε0dqrV = \dfrac{1}{4\pi\varepsilon_{0}} \displaystyle\int \dfrac{dq}{r}
Electric potential and potential energy of point charges U=q2V1U = q_{2}V_{1}
Work by electric force and electric field Wab=abFdl=qabEdlW_{a \to b} = \displaystyle\int_{a}^{b} \vec{F} \cdot d\vec{l} = q \int_{a}^{b} \vec{E} \cdot d\vec{l}
Work by electric force on a closed path Waba=qEdl=0W_{a \to b \to a} = q \displaystyle\oint \vec{E} \cdot d\vec{l} = 0
Work by electric force and change in potential energy Wab=ΔUW_{a \to b} = -\Delta U
Potential difference Vab=VbVaV_{ab} = V_{b} - V_{a}
Potential difference between terminals of battery Vbatt=V+=V+VV_{\mathrm{batt}} = V_{-+} = V_{+} - V_{-}
Potential difference and work, potential energy difference Vab=ΔUq0=Wabq0V_{ab} = \dfrac{\Delta U}{q_{0}} = -\dfrac{W_{a \to b}}{q_{0}}
Potential difference and electric field Vab=abEdl=Ecosθ dlV_{ab} = -\displaystyle\int_{a}^{b} \vec{E} \cdot d\vec{l} = -\displaystyle\int E \cos\theta \ dl
Electric field and potential gradient E=V=<Vx,Vy,Vz>\begin{aligned}\vec{E} &= -\vec{\nabla}V \cr &= \left<-\dfrac{\partial V}{\partial x}, -\dfrac{\partial V}{\partial y}, -\dfrac{\partial V}{\partial z} \right>\end{aligned}
Quantity Unit Definition
Capacitance
(in vacuum)
F(C/V=C2/J)\mathrm{F} \newline \mathrm{(C/V = C^{2}/J)} C=QV+=QV+VC = \dfrac{Q}{V_{-+}} = \dfrac{Q}{V_{+} - V_{-}}
Electric energy density
(in vacuum)
J/m3\mathrm{J/m^{3}} u=UAd=12ε0E2u = \dfrac{U}{Ad} = \dfrac{1}{2} \varepsilon_{0}E^{2}
Description Equations
Capacitance of a parallel-plate capacitor in vacuum C=QV+=ε0AdC = \dfrac{Q}{V_{-+}} = \varepsilon_{0} \dfrac{A}{d}
Potential energy stored in a charged capacitor (define Uuncharged0)U_{\mathrm{uncharged}} \equiv 0) U=Q22C=12CV2=12QVU = \dfrac{Q^{2}}{2C} = \dfrac{1}{2}CV^{2} = \dfrac{1}{2}QV
Electric energy density in vacuum u=UAd=12ε0E2u = \dfrac{U}{Ad} = \dfrac{1}{2} \varepsilon_{0}E^{2}
Dielectric constant κ=CC0=V0V=E0E\kappa = \dfrac{C}{C_{0}} = \dfrac{V_{0}}{V} = \dfrac{E_{0}}{E}
Induced surface charge density on a dielectric in an isolated capacitor σinduced=σboundσ0=σfreeσinduced=σ0(11κ)\sigma_{\mathrm{induced}} = \sigma_{\mathrm{bound}} \newline \sigma_{0} = \sigma_{\mathrm{free}} \newline \sigma_{\mathrm{induced}} = \sigma_{0} \left(1 - \dfrac{1}{\kappa} \right)
Permittivity of a dielectric ε=κε0\varepsilon = \kappa \varepsilon_{0}
Capacitance of a parallel-plate capacitor with dielectric between plates C=κC0=κε0Ad=εAdC = \kappa C_{0} = \kappa\varepsilon_{0}\dfrac{A}{d} = \varepsilon\dfrac{A}{d}
Electric energy density in a dielectric u=12κε0E2=12εE2u = \dfrac{1}{2}\kappa\varepsilon_{0}E^{2} = \dfrac{1}{2}\varepsilon E^{2}
Gauss’s law in dielectrics EdA=qfree,encκε0\displaystyle\oint \vec{E}\cdot d\vec{A} = \dfrac{q_{\mathrm{free, enc}}}{\kappa\varepsilon_{0}}
Quantity Unit Definition
Current A(C/s)\mathrm{A} \newline \mathrm{(C/s)} I=dQdtI = \dfrac{dQ}{dt}
Current density
(per unit cross-section area)
A/m2\mathrm{A/m^{2}} J=nqvdJ=IA=nqvd\vec{J} = nq\vec{v}_d \newline J = \dfrac{I}{A} = n \lvert q \rvert v_{d}
Conductivity
(intrinsic to a material)
(Ωm)1A/(Vm)\mathrm{(\Omega\cdot m)^{-1}} \newline \mathrm{A/(V\cdot m)} σ=JE\sigma = \dfrac{J}{E}
Resistivity
(intrinsic to a material)
Ωm\mathrm{\Omega\cdot m} ρ=EJ\rho = \dfrac{E}{J}
Resistance Ω\mathrm{\Omega} R=VI=ρLA=LσAR = \dfrac{V}{I} = \dfrac{\rho L}{A} = \dfrac{L}{\sigma A}
Description Equations
Drift velocity of charge carrier vd=qEmτ\vec{v}_{d} = -\dfrac{q\vec{E}}{m}\tau
Current and conductor properties I=dQdt=nqvdA=JAI = \dfrac{dQ}{dt} = n \lvert q \rvert v_{d}A = JA
Current density
(per unit cross-section area)
J=nqvdJ=IA=nqvd=nq2τmqE\vec{J} = nq\vec{v}_d \newline J = \dfrac{I}{A} = n \lvert q \rvert v_{d} = \dfrac{nq^{2}\tau}{m_{q}}E
Conductivity
(intrinsic to a material)
σ=JE=nq2τmq\sigma = \dfrac{J}{E} = \dfrac{nq^{2}\tau}{m_{q}}
Temperature dependence of resistivity ρ(T)=ρ0(1+α(TT0))\rho(T) = \rho_{0} (1 + \alpha (T-T_{0}))
Temperature dependence of resistance R(T)=R0(1+α(TT0))R(T) = R_{0} (1 + \alpha (T-T_{0}))
Description Equations
Circuit elements in series
Q,I\lvert Q \rvert, I - Equal
V,RV, R - Add
CC - Reciprocal
Q=Q1==QiI=I1==IiV=iViR=iRi1C=i1Ci\lvert Q \rvert = \lvert Q_{1} \rvert = … = \lvert Q_{i} \rvert \newline I = I_{1} = … = I_{i} \newline V = \sum\limits_{i} V_{i} \newline R = \sum\limits_{i} R_{i} \newline \dfrac{1}{C} = \sum\limits_{i} \dfrac{1}{C_{i}}
Circuit elements in parallel
VV - Equal
Q,I,CQ, I, C - Add
RR - Reciprocal
V=V1==ViQ=iQiI=iIiC=iCi1R=i1RiV = V_{1} = … = V_{i} \newline Q = \sum\limits_{i} Q_{i} \newline I = \sum\limits_{i} I_{i} \newline C = \sum\limits_{i} C_{i} \newline \dfrac{1}{R} = \sum\limits_{i} \dfrac{1}{R_{i}}
Algebra of reciprocal values of two elements 1A=1A1+1A2A=A1A2A1+A2\dfrac{1}{A} = \dfrac{1}{A_{1}} + \dfrac{1}{A_{2}} \Rightarrow A = \dfrac{A_{1}A_{2}}{A_{1} + A_{2}}
Kirchhoff’s junction rule
(conservation of charge)
I=0\sum I = 0
Kirchhoff’s loop rule
(conservation of energy)
V=0\sum V = 0
Battery (+)(- \to +) +E+\mathcal{E}
Resistor (along reference direction) IR-IR
Capacitor (+)(- \to +) +q(t)C+\dfrac{q(t)}{C}
Description Equations
Ohm’s law V=IRV = IR
Potential difference of source with internal resistance V+=EIr=IRV_{-+} = \mathcal{E} - Ir = IR
Current of source with internal resistance I=ER+rI = \dfrac{\mathcal{E}}{R + r}
Power delivered to or extracted from a circuit element P=IVP = IV
Power delivered to a resistor
(Note: both II and VV depend on RR)
P=IV=I2R=V2RP = IV = I^{2}R = \dfrac{V^{2}}{R}
Power output of a source P=IE=IV+I2r=I2(R+r)P = I\mathcal{E} = IV + I^{2}r = I^{2}(R+r)
Description Equations
Time constant τ=RC\tau = RC
Charge when charging capacitors q(t)=CE(1et/RC)=Qf(1et/RC)\begin{aligned}q(t) &= C\mathcal{E} (1-e^{-t/RC}) \cr &= Q_{f}(1-e^{-t/RC})\end{aligned}
Current when charging capacitors i(t)=ERet/RC=I0et/RCi(t) = \dfrac{\mathcal{E}}{R}e^{-t/RC} = I_{0}e^{-t/RC}
Charge when discharging capacitors q(t)=Q0et/RCq(t) = Q_{0} e^{-t/RC}
Current when discharging capacitors i(t)=Q0RCet/RC=I0et/RCi(t) = -\dfrac{Q_{0}}{RC}e^{-t/RC} = I_{0}e^{-t/RC}
Power of battery in R-C circuit P=iE=i2R+iqCP = i\mathcal{E} = i^{2}R + \dfrac{iq}{C}
Total energy stored in capacitor U=12QV=12QfEU = \dfrac{1}{2}QV = \dfrac{1}{2}Q_{f}\mathcal{E}
Quantity Unit Definition
Magnetic force N\mathrm{N} F=qv×B=qvBsinθ\begin{aligned}\vec{F} &= q\vec{v}\times\vec{B} \cr &= \lvert q \rvert v B \sin\theta\end{aligned}
Magnetic flux through a surface Wb(Tm2)\mathrm{Wb} \newline (\mathrm{T\cdot m^{2}}) ΦB=BdA\Phi_{B} = \displaystyle\int \vec{B}\cdot d\vec{A}
Magnetic dipole moment
(direction from S to N)
Am2J/T\mathrm{A\cdot m^{2}} \newline \mathrm{J/T} μ=IA\vec{\mu} = I\vec{A}
Description Equations
Magnetic force on a charged particle F=qv×B=qvBsinθ\vec{F} = q\vec{v}\times\vec{B} = \lvert q \rvert v B \sin\theta
Radius of a circular orbit in a magnetic field
(charge where vBv\perp B)
R=mvqBR = \dfrac{mv}{\lvert q \rvert B}
Angular speed (frequency) of circular motion ω=2πf=2πT=qBm\omega = 2\pi f = \dfrac{2\pi}{T} = \dfrac{\lvert q \rvert B}{m}
Frequency of circular motion f=1T=ω2π=qB2πmf = \dfrac{1}{T} = \dfrac{\omega}{2\pi} = \dfrac{\lvert q \rvert B}{2\pi m}
Period of circular motion T=1f=2πω=2πmqBT = \dfrac{1}{f} = \dfrac{2\pi}{\omega} = \dfrac{2\pi m}{\lvert q \rvert B}
Velocity selector v=EBv = \dfrac{E}{B}
Thompson’s experiment v=2qVmqm=E22VB2v = \sqrt{\dfrac{2qV}{m}} \newline \dfrac{q}{m} = \dfrac{E^{2}}{2VB^{2}}
Mass spectrometers m=qB2REm = \dfrac{\vert q \rvert B^{2}R}{E}
Description Equations
Magnetic force on a straight wire segment F=Il×B\vec{F} = I\vec{l}\times\vec{B}
Magnetic force on an infinitesimal wire segment dF=I dl×Bd\vec{F} = I \ d\vec{l}\times\vec{B}
Magnetic dipole moment μ=IA\vec{\mu} = I\vec{A}
Magnetic torque on a current loop τ=μ×B=IABsinθ\vec{\tau} = \vec{\mu}\times\vec{B} = IAB\sin\theta
Magnetic torque on a solenoid τ=Nμ×B=NIABsinθ\vec{\tau} = N\vec{\mu}\times\vec{B} = NIAB\sin\theta
Potential energy for a magnetic dipole in B field U=μB=μBcosθU = -\vec{\mu}\cdot\vec{B} = -\mu B \cos\theta
Description Equations
Magnetic flux through a surface ΦB=BdA\Phi_{B} = \displaystyle\int \vec{B}\cdot d\vec{A}
Gauss’s law for magnetism BdA=0\displaystyle\oint \vec{B}\cdot d\vec{A} = 0
Electromagnetic (Lorentz) force F=q(E+v×B)\vec{F} = q(\vec{E} + \vec{v}\times\vec{B})
Hall effect nq=JxByEznq = \dfrac{-J_{x}B_{y}}{E_{z}}
Quantity Unit Definition
Magnetic field TN/(Am)1G=104T\mathrm{T} \newline \mathrm{N/(A\cdot m)} \newline 1\mathrm{G} = 10^{-4}\mathrm{T} B=μ04πIdl×r^r2\vec{B} = \dfrac{\mu_{0}}{4\pi}\displaystyle\int\dfrac{I d\vec{l}\times\hat{r}}{r^{2}}
Description Equations
Ampere’s law Bdl=μ0I\displaystyle\oint \vec{B}\cdot d\vec{l} = \mu_{0}I
Magnetic field of a point charge B=μ04πqv×r^r2\vec{B} = \dfrac{\mu_{0}}{4\pi}\dfrac{q \vec{v}\times\hat{r}}{r^{2}}
Biot-Savart law
Magnetic field of infinitesimal length of wire
dB=μ04πIdl×r^r2d\vec{B} = \dfrac{\mu_{0}}{4\pi}\dfrac{I d\vec{l}\times\hat{r}}{r^{2}}
Force on two \infin parallel wires per unit length F=qv×B\vec{F} = q\vec{v}\times\vec{B}
Fl=μ0I1I22πd\dfrac{F}{l} = \dfrac{\mu_{0}I_{1}I_{2}}{2\pi d}
Force on two moving charges F=Il×B\vec{F} = I\vec{l}\times\vec{B}
F12=μ04πq1q2rv2×v1×r^\vec{F}_{1 \to 2} = \dfrac{\mu_{0}}{4\pi}\dfrac{q_{1}q_{2}}{r}\vec{v}_2\times\vec{v}_{1}\times\hat{r}
Conductor Form Magnetic Field Magnitude
\infin straight wire B=μ0I2πrB = \dfrac{\mu_{0}I}{2\pi r}
\infin current-conducting plane B=12μ0KB = \dfrac{1}{2}\mu_{0}K
Conductor Form Magnetic Field Magnitude
On the axis of circular wire loop Bx=μ0IR22(x2+R2)3/2B_{x} = \dfrac{\mu_{0}IR^{2}}{2(x^{2}+R^{2})^{3/2}}
On the axis of N circular wire loops Bx=Nμ0IR22(x2+R2)3/2=μ0μ2π(x2+R2)3/2B_{x} = \dfrac{N\mu_{0}IR^{2}}{2(x^{2}+R^{2})^{3/2}} = \dfrac{\mu_{0}\mu}{2\pi(x^{2}+R^{2})^{3/2}}
At the center of N circular wire loops Bx=Nμ0I2aB_{x} = \dfrac{N\mu_{0}I}{2a}
At the center of a circular arc B=μ0Iθ4πrB = \dfrac{\mu_{0}I\theta}{4\pi r}
Inside cylindrical conductor B=μ0I2πrR2  (r<R)B = \dfrac{\mu_{0}I}{2\pi}\dfrac{r}{R^{2}} \ \ (r<R)
Outside cylindrical conductor B=μ0I2πr  (r>R)B = \dfrac{\mu_{0}I}{2\pi r} \ \ (r>R)
Inside \infin solenoid B=Nμ0IB = N\mu_{0}I
Inside finite length solenoid B=Nμ0IlB = \dfrac{N\mu_{0}I}{l}
Inside toroid B=Nμ0I2πrB = \dfrac{N\mu_{0}I}{2\pi r}
Quantity Unit Definition
Inductance HVs/A\mathrm{H} \newline \mathrm{V \cdot s/A} L=ΦBiL = \dfrac{\Phi_{B}}{i}
Description Equations
Faraday’s law E=dΦBdt\mathcal{E} = -\dfrac{d\Phi_{B}}{dt}
Motional emf E=(v×B)dlE=vBl\mathcal{E} = \displaystyle\oint (\vec{v}\times\vec{B})\cdot d\vec{l} \newline \mathcal{E}= vBl
Faraday’s law for stationary integration path
(Induced electric field and magnetic flux)
Edl=dΦBdt\displaystyle\oint\vec{E}\cdot d\vec{l} = -\dfrac{d\Phi_{B}}{dt}
Inductance of a solenoid L=μ0N2AlL = \dfrac{\mu_{0}N^{2}A}{l}
Inductance as amount of change in current associated with change in magnetic flux E=LdidtdΦBdt=Ldidt\begin{aligned}\mathcal{E} &= -L\dfrac{di}{dt} \cr \dfrac{d\Phi_{B}}{dt} &= L\dfrac{di}{dt}\end{aligned}
Magnetic potential energy U=12LI2U = \dfrac{1}{2}LI^{2}
Magnetic energy density u=12B2μ0u = \dfrac{1}{2}\dfrac{B^{2}}{\mu_{0}}
Description Equations
Conduction current iC=dqdt=ε0dΦEdti_{C} = \dfrac{dq}{dt} = \varepsilon_{0}\dfrac{d\Phi_{E}}{dt}
Displacement current iD=ε0dΦEdti_{D} = \varepsilon_{0}\dfrac{d\Phi_{E}}{dt}
Maxwell-Ampere’s law Bdl=μ0(iC+iD)=μ0iC+μ0ε0dΦEdt\begin{aligned}\displaystyle\oint\vec{B}\cdot d\vec{l} &= \mu_{0}(i_{C}+i_{D}) \cr &= \mu_{0}i_{C} + \mu_{0}\varepsilon_{0}\dfrac{d\Phi_{E}}{dt}\end{aligned}
Magnetic field inside a circular capacitor B=μ0Ir2πR2 (r<R)B=μ0I2πR (rR)B=\dfrac{\mu_{0}Ir}{2\pi R^{2}} \ (r<R) \newline B=\dfrac{\mu_{0}I}{2\pi R} \ (r \ge R)
Maxwell’s Equations EdA=Qε0BdA=0Edl=dΦBdtBdl=μ0(iC+ε0dΦEdt)\displaystyle\oint\vec{E}\cdot d\vec{A} = \dfrac{Q}{\varepsilon_{0}} \newline \oint\vec{B}\cdot d\vec{A} = 0 \newline \oint\vec{E}\cdot d\vec{l} = -\dfrac{d\Phi_{B}}{dt} \newline \oint\vec{B}\cdot d\vec{l} = \mu_{0}\left( i_{C} + \varepsilon_{0}\dfrac{d\Phi_{E}}{dt} \right)
Maxwell’s equation in empty free space EdA=0BdA=0Edl=dΦBdtBdl=μ0ε0dΦEdt\oint\vec{E}\cdot d\vec{A} = 0 \newline \oint\vec{B}\cdot d\vec{A} = 0 \newline \oint\vec{E}\cdot d\vec{l} = -\frac{d\Phi_{B}}{dt} \newline \oint\vec{B}\cdot d\vec{l} = \mu_{0}\varepsilon_{0}\frac{d\Phi_{E}}{dt}
Quantity Unit Definition
Capacitive reactance Ω\mathrm{\Omega} XC=1ωCX_{C} = \dfrac{1}{\omega C}
Inductive reactance Ω\mathrm{\Omega} XL=ωLX_{L} = \omega L
Impedance Ω\mathrm{\Omega} Z=EmaxIZ = \dfrac{\mathcal{E}_{\mathrm{max}}}{I}
Description Equations
AC source in AC circuit E=Emaxsin(ωt)\mathcal{E} = \mathcal{E}_{\mathrm{max}}\sin(\omega t)
Angular frequency of oscillation ω=2πf\omega = 2\pi f
Resistor in AC circuit
(i and v in phase)
vR=Emaxsin(ωt)i=Isin(ωt)VR=IRv_{R} = \mathcal{E}_{\mathrm{max}}\sin(\omega t) \newline i = I\sin(\omega t) \newline V_{R} = IR
Capacitor in AC circuit
(i leads v by 90 deg)
vC=Emaxsin(ωt)i=Isin(ωt+90)VC=IXC=IωCv_{C} = \mathcal{E}_{\mathrm{max}}\sin(\omega t) \newline i = I\sin(\omega t + 90^{\circ}) \newline V_{C} = IX_{C} = \dfrac{I}{\omega C}
Inductor in AC circuit
(i lags v by 90 deg)
vL=Emaxsin(ωt)i=Isin(ωt90)VL=IXL=IωLv_{L} = \mathcal{E}_{\mathrm{max}}\sin(\omega t) \newline i = I\sin(\omega t - 90^{\circ}) \newline V_{L} = IX_{L} = I\omega L
RC series AC circuit ZRC=R2+1/(ωC)2tanϕ=VCVR=1ωRCZ_{RC} = \sqrt{R^{2} + 1/(\omega C)^{2}} \newline \tan\phi = -\dfrac{V_{C}}{V_{R}} = -\dfrac{1}{\omega RC}
RLC series AC circuit ZRLC=R2+(ωL1/ωC)2tanϕ=VLVCVR=ωL1/ωCRZ_{RLC} = \sqrt{R^{2} + (\omega L-1/\omega C)^{2}} \newline \tan\phi = \dfrac{V_{L} - V_{C}}{V_{R}} = \dfrac{\omega L - 1/\omega C}{R}
RC filters VC=VRωcutoff=1RCV_{C} = V_{R} \newline \omega_{\mathrm{cutoff}} = \dfrac{1}{RC}
High pass measures R
Low pass measures C
RL filters VR=VLωcutoff=RLV_{R} = V_{L} \newline \omega_{\mathrm{cutoff}} = \dfrac{R}{L}
High pass measures L
Low pass measures R
Trigonometric identities sinθ=cos(π2θ)cosθ=sin(π2θ)sin(θ)=sinθcos(θ)=cosθ\sin\theta = \cos(\frac{\pi}{2} - \theta) \newline \cos\theta = \sin(\frac{\pi}{2} - \theta) \newline \sin(-\theta) = -\sin\theta \newline \cos(-\theta) = \cos\theta
Description Equations
Lorentz factor γ=11v2/c2\gamma = \dfrac{1}{\sqrt{1-v^{2}/c^{2}}}
Time dilation Δtv=γΔtproper\Delta t_{v} = \gamma\Delta t_{\mathrm{proper}}
Length contraction lv=lproperγl_{v} = \dfrac{l_{\mathrm{proper}}}{\gamma}
Space-time interval s2=(cΔt)2(Δx)2s^{2} = (c\Delta t)^{2} - (\Delta x)^{2}
Lorentz transformation x=γ(xut)y=yz=zt=γ(tux/c2)vx=vxu1uvx/c2x' = \gamma(x - ut) \newline y' = y \newline z' = z \newline t' = \gamma (t-ux/c^{2}) \newline v_{x}' = \dfrac{v_{x} - u}{1-uv_{x}/c^{2}}
Relativistic inertia mv=γmm_{v} = \gamma m
Relativistic momentum p=γmvp = \gamma mv
Relativistic kinetic energy K=(γ1)mc2K = (\gamma - 1)mc^{2}
Internal (rest) energy Eint=mc2E_{\mathrm{int}} = mc^{2}
Total energy E=K+EintE2=(mc2)2+(pc)2E = K + E_{\mathrm{int}} \newline E^{2} = (mc^{2})^{2} + (pc)^{2}
Quantity Value
Coulomb constant k=8.99×109 Nm2/C2k = 8.99\times 10^{9} \ \mathrm{N\cdot m^{2}/C^{2}}
Electric constant ε0=8.85×1012 F/m\varepsilon_{0} = 8.85\times 10^{-12} \ \mathrm{F/m}
Magnetic constant μ0=1.26×106 H/m\mu_{0} = 1.26\times 10^{-6} \ \mathrm{H/m}
Elementary charge qe=1.60×1019 Cq_{e} = 1.60\times 10^{-19} \ \mathrm{C}
Mass of electron me=9.11×1031 kgm_{e} = 9.11\times 10^{-31} \ \mathrm{kg}
Speed of light in vacuum c=3.00×108 m/sc = 3.00\times 10^{8} \ \mathrm{m/s}