Contents

PHYS 121 Mechanics

Kinematics

Quantity Unit Definition
Displacement $\mathrm{m}$ $\Delta \vec{r} = \vec{r}_{f} - \vec{r}_{i}$
Instantaneous velocity $\mathrm{m/s}$ $\vec{v} = \dfrac{d\vec{r}}{dt}$
Instantaneous acceleration $\mathrm{m/s^{2}}$ $\vec{a} = \dfrac{d\vec{v}}{dt} = \dfrac{d^{2}\vec{x}}{dt^{2}}$
Description Equations
Kinematics equations at constant acceleration $x = x_{0} + v_{0}t + \dfrac{1}{2}at^{2}$
$v = v_{0} + at$
$v_{f}^{2} = v_{i}^{2} + 2a\Delta x$
Relative velocity $\vec{v}_{P/A} = \vec{v}_{P/B} + \vec{v}_{B/A}$
Centripetal acceleration $a_{\mathrm{rad}} = \dfrac{v^{2}}{R} = \dfrac{4\pi^{2}R}{T^{2}}$

Dynamics

Quantity Unit Definition
Spring force (Hooke’s law) $\mathrm{N}$ $F_{s} = -k\Delta x$
Static friction $\mathrm{N}$ $f_{s} \leq (f_{s})_{\mathrm{max}} = \mu_{s} F_{N}$
$\mu_{s} = \tan(\theta)$
Kinetic friction $\mathrm{N}$ $f_{k} = \mu_{k} F_{N}$
Gravitational force near Earth surface $\mathrm{N}$ $\vec{F}_{g} = m\vec{g}$
$g = 9.81 \mathrm{m/s^{2}}$
Description Equations
Newton’s first law moving at constant velocity $\sum \vec{F}_{\mathrm{ext}} = \vec{0}$
Newton’s second law $\sum \vec{F}_{\mathrm{ext}} = m\vec{a}$
Newton’s third law $\vec{F}_{AB} = - \vec{F}_{BA}$
Acceleration on an inclined plane $a = g\sin\theta$

Energy

Quantity Unit Definition
Work $\mathrm{J}$ $W = \vec{F} \cdot \vec{x} = Fx\cos\theta$
$W = \displaystyle\int_{x_{1}}^{x_{2}} F \ dx$
Kinetic energy $\mathrm{J}$ $K = \dfrac{1}{2}mv^{2}$
Power $\mathrm{W}$ $P = \dfrac{dW}{dt} = \dfrac{dE}{dt}$
$P = \vec{F} \cdot \vec{v}$
Gravitational potential energy $\mathrm{J}$ $U = mgh$
$W_{\mathrm{grav}} = - \Delta U_{\mathrm{grav}}$
Elastic potential energy $\mathrm{J}$ $U = \dfrac{1}{2}kx^{2}$
$W_{\mathrm{el}} = - \Delta U_{\mathrm{el}}$
Reduced mass $\mathrm{kg}$ $\mu = \dfrac{m_{1}m_{2}}{m_{1} + m_{2}}$
Coefficient of restitution - $e = -\dfrac{v_{12, f}}{v_{12, i}}$
Description Equations
Work-energy theorem $W_{\mathrm{total}} = \Delta K$
Conservation of mechanical energy $K_{i} + U_{i} = K_{f} + U_{f}$
Energy of system with external force (non-isolated system) $K_{i} + U_{i} + W = K_{f} + U_{f}$
Conservation of energy $\Delta K + \Delta U + \Delta U_{int} = 0$
Force as a function of potential energy $\vec{F} = -\vec{\nabla} U$
$F = -\dfrac{dU}{dx}$

Momentum

Quantity Unit Definition
Momentum $\mathrm{kg\cdot m/s}$ $\vec{p} = m\vec{v}$
$\sum \vec{F}_{\mathrm{ext}} = \dfrac{d\vec{p}}{dt}$
Impulse $\mathrm{kg\cdot m/s}$ $\vec{J} = \sum \vec{F} \Delta t$
$\vec{J} = \displaystyle\int_{t_{1}}^{t_{2}} \sum \vec{F} \ dt$
Center of mass $\mathrm{m}$ $\vec{r}_{\mathrm{cm}} = \dfrac{\sum\limits_{i} m_{i}\vec{r}_{i}}{\sum\limits_{i} m_{i}}$
Description Equations
Impulse-momentum theorem $\vec{J} = \Delta \vec{p}$
Conservation of momentum (closed system) $\vec{p}_{i} = \vec{p}_{f}$
$\sum \vec{F}_{\mathrm{ext}} = \dfrac{d\vec{p}}{dt}$
Force on extended body $\sum \vec{F}_{\mathrm{ext}} = m\vec{a}_{\mathrm{cm}}$

Rotational Kinematics

Quantity Unit Definition
Angular displacement $\mathrm{rad}$ $\Delta \theta = \theta_{f} - \theta_{i}$
Angular velocity $\mathrm{rad/s}$ $\omega_{z} = \dfrac{d\theta}{dt}$
Angular acceleration $\mathrm{rad/s^{2}}$ $\alpha_{z} = \dfrac{d\omega_{z}}{dt} = \dfrac{d^{2}\theta}{dt^{2}}$
Rotational Inertia of particle $\mathrm{kg\cdot m^{2}}$ $I = \sum\limits_{i} m_{i}r_{i}^{2}$
Rotational kinetic energy $\mathrm{J}$ $K = \dfrac{1}{2}I\omega^{2}$
Description Equations
Rotational kinematics equation with constant angular acceleration $\theta = \theta_{0} + \omega_{0z}t + \dfrac{1}{2}\alpha_{z} t^{2}$
$\omega_{z} = \omega_{0z} + \alpha_{z}t$
$\omega_{fz}^{2} = \omega_{iz}^{2} + 2\alpha_{z}\Delta\theta$
Relationship between linear kinematics and rotational kinematics $s = r\theta$
$v = r\omega$
$a_{\mathrm{tan}} = r\alpha$
$a_{\mathrm{rad}} = \dfrac{v^{2}}{r} = \omega^{2}r$
Parallel-axis theorem $I_{\mathrm{parallel}} = I_{\mathrm{cm}} +md^2$

Rotational Dynamics

Quantity Unit Definition
Torque $\mathrm{N\cdot m}$ $\vec{\tau} = \vec{r} \times \vec{F} = Fr\sin\theta$
$\sum \vec{\tau} = \dfrac{d\vec{L}}{dt}$
Angular momentum of a particle $\mathrm{kg\cdot m^{2}/s}$ $\vec{L} = \vec{r} \times \vec{p} = mvr\sin\theta$
Angular momentum of rotating body $\mathrm{kg\cdot m^{2}/s}$ $\vec{L} = I \vec{\omega}$
Description Equations
Rotational Newton’s second law $\sum \tau = I\alpha_{z}$
Condition of mechanical equilibrium $\sum \vec{F}_{\mathrm{ext}} = m\vec{a}$
$\sum \tau = I\alpha_{z}$
Total kinetic energy of rotating and translating object $K = \dfrac{1}{2}mv^{2}_{\mathrm{cm}} + \dfrac{1}{2} I_{\mathrm{cm}} \omega^{2}$
Rolling without slipping $v_{\mathrm{cm}} = R\omega$
Slipping (only rolling) $v_{\mathrm{cm}} < R\omega$
Skidding (only translating) $v_{\mathrm{cm}} > R\omega$
Rotational Work $W = \tau_{z}\Delta\theta$
$W = \displaystyle\int_{\theta_{1}}^{\theta_{2}} \tau_{z} \ d\theta$
$W = \Delta K_{\mathrm{rot}}$
Power $P = \dfrac{dW}{dt}$
$P = \tau_{z}\omega_{z}$
Conservation of angular momentum (closed system) $\vec{L}_{i} = \vec{L}_{f}$
$\sum \vec{\tau} = \dfrac{d\vec{L}}{dt}$

Universal Gravitation

Quantity Unit Definition
Gravitational force $\mathrm{N}$ $F_{g} = G\dfrac{m_{1}m_{2}}{r^{2}}$
Gravitational acceleration $\mathrm{m/s^{2}}$ $g = G\dfrac{m_{E}}{r^{2}}$
Gravitational potential energy $\mathrm{J}$ $U = - G\dfrac{m_{E}m}{r}$
Description Equations
Escape velocity $v_{\mathrm{escape}} = \sqrt{\dfrac{2Gm_{E}}{R}}$
Velocity in circular orbit $v_{\mathrm{circ}} = \sqrt{\dfrac{Gm_{E}}{R}} = \dfrac{2\pi R}{T}$
Period in circular orbit $T = \dfrac{2\pi R}{v} = 2\pi R\sqrt{\dfrac{R}{Gm_{E}}} = \dfrac{2\pi r^{3/2}}{\sqrt{Gm_{E}}}$