Contents

NME 220 Molecular and Nanoscale Principles

Intro to NME

Driving forces and potentials

Description Equations
Avogadro’s number
(Critical parameter of amount of particles to resist fluctuations)
$N_A = 6.02\times 10^{23} \ \mathrm{mol^{-1}}$
Fick’s law
$\vec{J}_{AB} \ [\mathrm{mol/(m^2 s)}]$ - diffusive flux
$D_{AB} \ [\mathrm{m^2/s}]$ - binary diffusion coefficient
$\nabla c_A$ - concentration gradient
$\vec{J}_{AB} = -D_{AB}\nabla c_A$

Scaling laws

Description Equations
Power density of engines $\dfrac{P}{V} = \dfrac{Fv}{V}$
Scaling law of power density $\dfrac{P}{V} \propto \dfrac{1}{L}$
Terminal velocity of droplets $v_t = \dfrac{2gr^2(\rho_{\text{sphere}} - \rho_{\text{air}})}{9 \eta}$
Scaling law of terminal velocity $v_t \propto L^2$

Electric transport properties

Description Equations
Bohr’s radius
(Critical length scale parameter for discrete excited electronic states)
$a_0 = \dfrac{4\pi\varepsilon_0(\frac{h}{2\pi})^2}{m_e e^2}$
Ohm’s law
$\vec{J}$ - electric current density (flux)
$\sigma \ [\mathrm{Sm^{-1}}]$ - electric conductivity
$\nabla V$ - electric potential gradient
$\vec{J} = \sigma\nabla V$
Ohm’s law
$G_e \ [\mathrm{S = \Omega^{-1}}]$ - electric conductance
$G_e = \dfrac{1}{R} = \dfrac{I}{V}$
Mean free path $\lambda = \dfrac{k_BT}{\sqrt{2}\pi Pd^2}$
Drude model
Microscopic description - electric conductivity in 3D
$\sigma$ - electric conductivity
$\lambda$ - mean free path
$\overline{c}$ - mean electron gas velocity
$\sigma = \dfrac{\lambda e^2 n\overline{c}}{6k_B T}$
Electric conductivity in 1D
$N_e$ - transmission probability, # of electronic states (modes) at Fermi level
$L$ - length of conuctor
$\sigma = \dfrac{2e^2 N_e}{hL}$
Electric conductance in 3D $G_e = \dfrac{\lambda e^2 n\overline{c}}{6k_B T} \dfrac{A}{L} \propto \dfrac{1}{L}$
Electric conductance in 1D $G_e = \dfrac{2e^2}{h}N_e$

Thermo transport properties

Description Equations
Volumetric heat capacity at constant pressure $C_V = \rho c_P$
Thermal diffusivity $\alpha = \dfrac{k_c}{C_V} = \dfrac{k_c}{\rho c_P}$
Fourier’s law
$\vec{q} \ [\mathrm{Wm^{-2}}]$ - heat flux
$k_c \ [\mathrm{Wm^{-1}K^{-1}}]$ - thermal conductivity
$\nabla T$ - temperature gradient
$\vec{q} = -k_c \nabla T$
Fourier’s law
$\vec{J}$ - heat flux (?)
$\alpha$ - thermal diffusivity
$\nabla T$ - temperature gradient
$\vec{J} = \dfrac{\vec{q}}{C_V} = -\alpha\nabla T$
Microscopic description $k_c = \frac{1}{2}n\overline{c}\lambda k_B$
Thermal conductance in 3D $G_{th} = k_c \dfrac{A}{L} \propto \dfrac{1}{L}$
Thermal conductance in 1D
$N_{ph}$ - # of phonons
$G_{th} = \dfrac{\pi^2 k_B^2 T}{3h}N_{ph}$

Miniaturization effect on surface energy and strain

Description Equations
Surface stress
$\gamma \ [\mathrm{Jm^{-2}}]$ - surface energy per area of solid
$\gamma \ [\mathrm{F/m}]$ - surface tension of liquid
$\varepsilon$ - strain
$\frac{\partial\gamma}{\partial\varepsilon}$ - stored mechanical energy in solid
$(\frac{\partial\gamma}{\partial\varepsilon} = 0)$ for liquid
$f = \gamma + \dfrac{\partial\gamma}{\partial\varepsilon}$
Surface energy/tension $\gamma = E_{\text{coh, surface}} - E_{\text{coh, inside}}$
Isotropic pressure
$f$ - surface stress
$D$ - diameter of particle
$P = \dfrac{4f}{D}$
Scaling law of elastic strain
$\varepsilon$ - strain
$K$ - bulk modulus
$\varepsilon = -\dfrac{P}{3K} = -\dfrac{4}{3}\dfrac{f}{K}\dfrac{1}{D} \propto \dfrac{1}{D}$

Atomic Theory of Matter

Blackbody radiation

Description Equations
Wein’s displacement law
$\lambda_{\mathrm{max}}$ - maximum of irradiation spectrum
$\lambda_{\mathrm{max}}T = 2.898\times 10^{-3} \ \mathrm{m \cdot K}$
Stefan-Boltzmann law
$I \ [\mathrm{Wm^{-2}}]$ - radiation power
$I_\lambda \ [\mathrm{Wm^{-3}}]$ - spectral irradiation
$\varepsilon$ - emissivity
$\sigma$ - Stefan-Boltzmann constant
$I = \int_0^\infty I_\lambda \ d\lambda = \varepsilon\sigma T^4 \newline (\sigma = 5.67\times 10^{-8} \ \mathrm{W m^{-2} K^{-4}})$
Radiation power $P = IA$
Rayleigh-Jeans' average mode energy of photon $\langle E \rangle = \frac{1}{2}k_BT$
Rayleigh-Jeans radiation law
$k_B$ - Boltzmann’s constant
$I_\lambda(\lambda) = \dfrac{2\pi ck_B T}{\lambda^4} \newline I_\nu(\nu) = \dfrac{8\pi \nu^2 k_B T}{c^3}$
Planck’s average mode energy of photon $\langle E \rangle = \dfrac{h\nu}{e^{h\nu / k_BT} - 1}$
Planck’s radiation law
$u$ - energy density
$u_\lambda(\lambda) = \dfrac{8\pi hc}{\lambda^5}\dfrac{1}{e^{hc / \lambda k_BT} - 1} \newline u_\nu(\nu) = \dfrac{8\pi h \nu^3}{c^3}\dfrac{1}{e^{h\nu / k_BT} - 1}$
Planck’s law confirms Stefan-Boltzmann law
$I$ - radiation intensity
$\sigma$ - Stefan-Boltzmann constant
$I(\nu) = \sigma T^4 \newline \sigma = \dfrac{2\pi^5 k_B^4}{15c^2 h^3}$
Energy of an EM mode $E_n = nh\nu$

Photoelectric effect

Description Equations
Energy of a photon $\Delta E = h\nu$
Work function of a metal $\Phi = e\phi$
Photoelectric effect $E_k = h\nu - e\phi$
Condition for moving free electrons excited by photon $h\nu \ge e\phi$
Mass-energy equivalence $E=mc^2$

Wave-particle duality

Description Equations
Classical linear momentum $p = mv = \sqrt{2mE}$
Photon linear momentum $p = \dfrac{h\nu}{c} = \dfrac{h}{\lambda}$
de Broglie wavelength of particle $\lambda = \dfrac{h}{mv} = \dfrac{h}{\sqrt{2mE_k}}$
Davisson-Germer experiment
(electron diffraction constructive interference)
$n\lambda = 2d\sin\theta$
Bragg’s law $\dfrac{1}{\lambda} = \dfrac{n}{2d\sin\theta}$
Bragg-de Broglie relation $\dfrac{1}{\lambda} = \begin{cases} \frac{n}{2d\sin\theta} \cr \frac{p}{h} = \frac{\sqrt{2mE}}{h}\end{cases}$

Atomic Model

Bohr’s model of atoms

Description Equations
Rydberg formula
Emission lines of hydrogen
$R_H$ - Rydberg constant
$n_1 = 1,2,3, … \newline n_2 > n_1$
$\dfrac{1}{\lambda} = R_H \left( \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right) \newline R_H = 1.097 \times 10^7 \ \mathrm{m^{-1}}$
Quantization condition of Bohr’s model
$n = 1,2,3,…$
$\lambda$ - wavelength of electron
$r$ - radius of stable shell
$2\pi r = n\lambda$
Energy of electron in each shell
$n = 1,2,3,…$
$E_n = \dfrac{-m_e e^4}{8 \varepsilon_0^2 h^2}\dfrac{1}{n^2}$
Emission and absorption of H atom
Emission - $j>1$
Absorption - $i>j$
$\begin{aligned}h\nu &= \Delta E \cr &= -\dfrac{m_e e^4}{8\varepsilon_0^2 h^2} \left( \dfrac{1}{n_j^2} - \dfrac{1}{n_i^2} \right) \cr &= -13.6 \ \mathrm{eV} \left( \dfrac{1}{n_j^2} - \dfrac{1}{n_i^2} \right)\end{aligned}$
Reduced mass $\mu = \dfrac{m_e m_p}{m_e + m_p}$
Planck’s constant $\hbar = \dfrac{h}{2\pi}$
Rydberg’s constant $R_H = R_\infty \dfrac{\mu}{m_e} = \dfrac{\mu e^4}{8\varepsilon_0^2 h^3 c}$
Bohr radius $a_0 = \dfrac{4\pi\varepsilon_0\hbar^2}{m_e e^2} \approx 0.053 \ \mathrm{nm}$
Reduced Bohr radius $a_0^* = \dfrac{4\pi\varepsilon_0\hbar^2}{\mu e^2} \approx 0.053 \ \mathrm{nm}$
Ionization energy of electron from ground state $E_I = \dfrac{-\mu e^4}{8\varepsilon_0^2 h^2} = -13.6 \ \mathrm{eV}$

Dispersion relations

Description Equations
Wave equation of traveling wave $u(x,t) = A\sin(kx-\omega t + \phi)$
Wave number $k = \dfrac{2\pi}{\lambda}$
Angular frequency $\omega = 2\pi\nu = \dfrac{2\pi}{\lambda}c = kc$
Period $T = \dfrac{1}{\nu} = \dfrac{\lambda}{c}$
Dispersion relation of EM wave $\omega(k) = ck$
Dispersion relation of particle wave $\omega(k) = \dfrac{\hbar}{2m}k^2$

Single slit experiment

Description Equations
Variables $a$ - width of the slit
$L$ - distance between slit and screen
$p$ - integer destructive interference #
$p = \pm 1, \pm 2, \pm 3, …$
Destructive interference $\phi = p\lambda = a\sin\theta$
Constructive interference $\phi = (p+\frac{1}{2})\lambda = a\sin\theta$
Location of destructive interference $y_p = p\dfrac{\lambda L}{a}$
Location of constructive interference $y_p = (p+\frac{1}{2})\dfrac{\lambda L}{a}$

Double slit experiment

Description Equations
Variables $\delta$ - path difference of two diffracting waves
$d$ - distance between two slits
$L$ - distance between slit and screen
$m$ - integer constructive interference #
$m = 0, \pm 1, \pm 2, \pm 3, …$
Constructive interference $\delta = m\lambda = d\sin\theta$
Destructive interference $\delta = (m+\frac{1}{2})\lambda = d\sin\theta$
Location of constructive interference $y_m = m\dfrac{\lambda L}{d}$
Location of destructive interference $y_m = (m+\frac{1}{2})\dfrac{\lambda L}{d}$
Intensity of macroscopic particle and quantum particle with observation $I = I_1 + I_2$
Intensity of wave and quantum particle $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\delta$

Heisenberg uncertainty principle

Description Equations
Heisenberg uncertainty principle
position-momentum form
$\Delta x \Delta p \ge \dfrac{\hbar}{2}$
Heisenberg uncertainty principle
energy-time form
$\Delta E \Delta t \ge \dfrac{\hbar}{2}$
Macroscopicity $10^\mu \propto \dfrac{\tau_p}{\tau_e}$

Wave Function

The Schrodinger equation

Description Equations
Wave function $\Psi(x, t) = \Psi_0 e^{i(kx-\omega t)}$
Wave function as probability density $P = \lvert \Psi(x) \rvert^2$
Linear momentum operator $\hat{p_x} = -i\hbar\frac{\partial}{\partial x} \implies p_x$ as eigenvalue
Time operator $\hat{t} = -i\hbar\frac{\partial}{\partial t} \implies E$ as eigenvalue
Hamiltonian operator $\hat{H} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x) \implies E$ as eigenvalue
Time-dependent wave equation for free particle $i\hbar\dfrac{\partial}{\partial t}\Psi(x, t) = -\dfrac{\hbar^2}{2m}\dfrac{\partial^2}{\partial x^2}\Psi(x, t)$
Time-dependent Schrodinger equation
(particle with potential constraint)
$i\hbar\dfrac{\partial}{\partial t}\Psi = \left(-\dfrac{\hbar^2}{2m}\dfrac{\partial^2}{\partial x^2} + V(x)\right) \Psi$
Time-independent Schrodinger equation $\left(-\dfrac{\hbar^2}{2m}\dfrac{\partial^2}{\partial x^2} + V(x)\right) \psi = E\psi$
Time-independent Schrodinger equation (operator form) $\hat{H}\psi = E\psi$

Particle in infinite 1D box

Description Equations
Potential function $V(x) = \begin{cases} 0 & (0, L) \cr \infty & (-\infty, 0) \cup (L, \infty) \end{cases}$
SE inside the box $\dfrac{d^2\psi}{dx^2}+k^2\psi = 0$
General solution $\psi_n(x) = \sqrt{\dfrac{2}{L}} \sin \left(\dfrac{n\pi x}{L}\right)$
Quantized wave number $k_n = \dfrac{n\pi}{L}$
Quantized momentum $p_n = \hbar k_n = \dfrac{n\pi\hbar}{L}$
Quantized energy level $E_n = \dfrac{p_n^2}{2m} = \dfrac{(n\pi\hbar)^2}{2mL^2} = n^2 E_1$

Quantum structures

Description Equations
General continuous energy spectrum in non-confined dimensions $E_i = \dfrac{\hbar^2 k_i^2}{2m}$
General discrete energy spectrum in confined dimension $E_{n_{i}} = \dfrac{\hbar^2\pi^2}{2mL^2}n_i^2$
Total energy $E = E_x + E_y + E_z$
General wave function $\psi_{n_x}(x) = \sqrt{\dfrac{2}{L}}\sin\left(\dfrac{n_x\pi x}{L}\right)$

The hydrogen atom

Description Equations
Potential function $V(r) = \dfrac{-e^2}{4\pi\varepsilon_0 r}$
Energy level of electrons in H atom $E_n = \dfrac{-m_e e^4}{8\varepsilon_0^2 h^2}\dfrac{1}{n^2}$
Wave function of electrons in H atom $\psi_{100} = \dfrac{1}{\sqrt{\pi}}\left(\dfrac{1}{a_0}\right)^{3/2}e^{-r/a_0}$
Principle quantum number $n = 1, 2, 3, …$
Orbital (angular momentum) quantum number $l = 0, 1, 2, …, n-1$
Magnetic quantum number $m_l = -l, …, -1, 0, 1, …, l$
Spin quantum number $m_s = \frac{1}{2}, -\frac{1}{2}$

Nanoscience & Technology

Electron transport through 1D quantum wire

Description Equations
Variables $\mu$ - electrochemical potential of electrode
$M$ - mode number (single node: $M=1$)
S - source; D - drain
Electrochemical potential difference between source and drain $eV_{\text{bias}} = \mu_S - \mu_D$
Current in 1D quantum wire (single mode) $I = \dfrac{2q}{h}(\mu_S - \mu_D) = \dfrac{2q^2}{h}V_{\text{bias}}$
Quantum conductance (single mode) $G_Q = \dfrac{2q^2}{h}\approx 7.75\times 10^{-5} \ \mathrm{S}$
Quantum resistance (single mode) $R = \dfrac{h}{2q^2}\approx 12.9 \ \mathrm{k\Omega}$
Current in 1D quantum wire (multi-mode) $I = \dfrac{2qM}{h}(\mu_S - \mu_D) = \dfrac{2q^2M}{h}V_{\text{bias}}$
Quantum conductance (multi-mode) $G_Q = \dfrac{2q^2 M}{h}$
Quantum resistance (multi-mode) $R = \dfrac{h}{2q^2 M}$

Particle in finite 1D box

Description Equations
Finite potential $V(x) = \begin{cases} V & (-\infty, 0) \cup (L, \infty) \cr 0 & (0, L) \end{cases}$
Wave number $k = \sqrt{\dfrac{2mE}{\hbar^2}}$
Modified wave number $k' = \sqrt{\dfrac{2m}{\hbar^2}(V-E)}$
Wave function on the left $\psi_1(x) = C_1e^{ik’x}$
Wave function in the middle $\psi_2(x) = A_1\sin(kx) + A_2\cos(kx)$
Wave function on the right $\psi_3(x) = C_2e^{-ik’x}$

Tunneling effect

Description Equations
Wave number $k = \sqrt{\dfrac{2mE}{\hbar^2}}$
Modified wave number $k' = \sqrt{\dfrac{2m}{\hbar^2}(V-E)}$
Wave function on the left $\psi_1(x) = \psi_{\text{incid}}(x) + \psi_{\text{refl}}(x) \newline \psi_{\text{incid}}(x) = Ae^{ikx} \newline \psi_{\text{refl}}(x) = Be^{-ikx}$
Wave function in the barrier $\psi_2(x) = Ce^{ik’x} + De^{-ik’x}$
Wave function on the right $\psi_3(x) = \psi_{\text{trans}}(x) = Fe^{ikx}$
Transmission probability $\begin{aligned}T(L, V, E) &= \dfrac{\lvert\psi_{\text{trans}}(x)\rvert^2}{\lvert\psi_{\text{incid}}(x)\rvert^2} \cr &\approx 16 \dfrac{E}{V} \left(1-\dfrac{E}{V}\right) e^{-k’L} \cr &\approx \frac{1}{2}e^{2k’L}\end{aligned}$
Work function with trapezoidal approximation at junction $\Phi = \frac{1}{2}(\Phi_1 + \Phi_2 - \lvert eV_{\text{bias}}\rvert)$
Tunnel current
$D_s(E_F)$ - density of states at Fermi level
$I_t \propto V_{\text{bias}}D_s(E_F)\exp\left(-\sqrt{\frac{8m}{\hbar^2}(\Phi-E)}L\right)$

Energy discretization of nanoparticles

Description Equations
Spacing between energy levels $\Delta E = \dfrac{4}{3} \dfrac{E_F}{N_e}$
Energy level and thermal noise $\Delta E \begin{cases} \ll k_BT & \footnotesize\text{not quant. confined, continuous} \cr > k_BT & \footnotesize\text{quant. confined, discrete} \end{cases}$
Conductor-insulator classification $\Delta E = \dfrac{4}{3} \dfrac{E_F}{N_e} = k_BT$
Number of electrons that can have discrete energy level $N_e < \dfrac{4}{3}\dfrac{E_f}{k_B T}$

Single electron box

Description Equations
Variables t - tunnel; g - gate; c - charging
Total capacitance $C_{\text{dot}} = C = C_t + C_G$
Gate voltage $V_G = \dfrac{q_1}{C_t}+\dfrac{q_2}{C_G}$
System energy $E_{\text{sys}} = \dfrac{q_1^2}{2C_t} + \dfrac{q_2^2}{2C_G}$
Charging energy $E_c = \dfrac{e^2}{2C}$
Quantum kinetic energy
$V$ - volume of QD
$D_s(E)$ - density of states
$E_k = \dfrac{1}{VD_s(E_F)}$
Electron addition energy $E_a = E_c + E_k$
Thermal noise requirement of single electron box (Coulomb blockade) $E_c \gg k_BT \newline E_c > 10 k_BT$
Quantum noise requirement of single electron box $R_t \gg \dfrac{h}{e^2} \approx 25.8 \mathrm{k\Omega}$
RC time constant $\tau = R_tC$
Gibbs free energy $\mathcal{F} = H-TS$
Gibbs free energy at equilibrium
(Coulomb parabola potential)
$\mathcal{F}(n, V_G) = \dfrac{(C_GV_G - ne)^2}{2C} \propto V_G^2$
Coulomb parabola potential conditions $\mathcal{F} = \begin{cases} 0 & \text{if } C_GV_G = ne \cr E_c & \text{if } C_GV_G = (n+1)e \end{cases}$
Capacitance of quantum dots
$d$ - diameter
$C_{\text{dot}} = G\varepsilon\varepsilon_0 d$
Geometric factor $G = \begin{cases}2\pi & \text{sphere} \cr 4 & \text{disc}\end{cases}$

Single electron transistor

Description Equations
Charging energy $E_c = \dfrac{e^2}{2C_{\text{dot}}}$
Charging energy
$Q_0$ - polarization charge
$ne$ - uncompensated electrons
$E_c = \dfrac{(Q_0 - ne)^2}{2C_{\text{dot}}}$
Charging voltage $V_g = \dfrac{E_c}{e} = \dfrac{e}{2C_{\text{dot}}}$
Capacitance of quantum dot $C_{\text{dot}} = C_{t_1} + C_{t_2} + C_G$

Electronic Structure of Molecules

The hydrogen atom (revisited)

Description Equations
Potential function $V(r) = \dfrac{-e^2}{4\pi\varepsilon_0 r}$
Energy level of electrons in H atom $E_n = \dfrac{-m_e e^4}{8\varepsilon_0^2 h^2}\dfrac{1}{n^2} = -13.6 \ \mathrm{eV}\dfrac{1}{n^2}$
Bohr radius $a_0 = \dfrac{4\pi\varepsilon_0\hbar^2}{m_e e^2} \approx 0.053 \ \mathrm{nm}$
Wave function $\psi(\mathbf{r}) = R(r)Y(\theta, \phi)$
Angular component of wave function $Y(\theta, \phi) = \Theta(\theta)\Phi(\phi)$
Wave function in ground state $\psi_{100} = \dfrac{1}{\sqrt{\pi}}\left(\dfrac{1}{a_0}\right)^{3/2}e^{-r/a_0}$
Wave function in $n,0,0$ state $\psi_{n00} = \dfrac{R_n(r)}{\sqrt{4\pi}}$
Probability density function $\rho_{nlm} = \lvert\psi_{nlm}\rvert^2 = \psi\psi^*$
Radial probability density $P_{nl}(r) = \lvert R_{nl} \rvert^2 r^2$
Number of radial nodes $n-l-1$

Angular momentum

Description Equations
Angular momentum operator in $z$ direction $\hat{L}_z = i\hbar (x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x})$
Orbital angular momentum in $z$ direction $L_z = m_l\hbar$
Angular momentum magnitude operator $\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$
Orbital angular momentum $L = \hbar\sqrt{l(l+1)}$
Spin angular momentum in $z$ direction $S_z = m_s\hbar$
Spin angular momentum $S = \hbar\sqrt{s(s+1)}$
Total angular momentum in $z$ direction $J_z = m_j\hbar$
Total angular momentum $J = \hbar\sqrt{j(j+1)}$
spin angular momentum quantum number $s = \frac{1}{2}, m_s = \pm \frac{1}{2}$
Spin-orbit coupling $j = l \pm s$
Energy degeneracy considering spin $2n^2$

Bonding in molecules

Description Equations
Bonding (symmetric linear combination) $\psi_g = \psi_1 + \psi_2$
Anti-bonding (asymmetric linear combination) $\psi_u = \psi_1 - \psi_2$

Electronic states

Note: the mass here are electron mass.

Description Equations
Fermi-Dirac distribution $f(E)=\dfrac{1}{\exp\left(\dfrac{E- E_{f}}{k_B T}\right)+1}$
Fermi energy in 3D at 0 K $E_{F}=\dfrac{\hbar^{2} k_{F}^{2}}{2 m}=\dfrac{\hbar^{2}}{2 m}\left(3 \pi^{2} n_e\right)^{2/3}$
Fermi wave number in 3D at 0 K $k_{F}=\frac{1}{\hbar} \sqrt{2 m E_{F}}=\left(3 \pi^{2} n_e\right)^{1 / 3}$
Fermi velocity approximation in 3D $v_F = \dfrac{\hbar k_F}{m} = \dfrac{\hbar}{m}(3\pi^2 n_e)^{1/3}$
Wavelength in 3D at 0 K $\lambda_F = \dfrac{2\pi\hbar}{mv_F}$
Density of states (general) $D_s(E)=\dfrac{dN}{dE}\dfrac{1}{V}$
Density of states in 3D at 0 K $D_s^{\text{3D}}(E)=\dfrac{8 \sqrt{2} \pi m^{3 / 2}}{h^{3}} \sqrt{E}$
Density of states in 2D at 0 K
$(0<E<E_1)$
$D_s^{\text{2D}}(E)=\dfrac{4\pi m}{h^2}$
Density of states in 1D at 0 K $D_s^{\text{1D}}(E)=\dfrac{\sqrt{2m}}{h}\dfrac{1}{\sqrt{E}}$
Density of states in 0D at 0 K $D_s^{\text{0D}}(E)=2$
Number density of electron (general) $n_e(E) = \dfrac{N}{V} = \displaystyle\int_{0}^\infty f(E) D(E) \ dE$
Number density of electron in 3D at 0 K $n_e^{\text{3D}} = \dfrac{16 \sqrt{2} \pi m^{3/2}}{3 h^{3}} E_{F}^{3/2}$
Number density of electron in 2D at 0 K $n_e^{\text{2D}} = \dfrac{4\pi m}{h^2}E_F$
Number density of electron in 1D at 0 K $n_e^{\text{1D}} = \dfrac{2\sqrt{2m}}{h}\sqrt{E_F}$
Number density of electron in 0D at 0 K $n_e^{\text{0D}} = 2E_F$

Semiconductor carriers

Description Equations
Band gap $E_g = E_c - E_v$
Density of state of electrons (conduction band) $D_c(E) = \dfrac{8\sqrt{2}\pi m_e^{*3/2}}{h^3}\sqrt{E-E_c}$
Density of state of holes (valance band) $D_v(E) = \dfrac{8\sqrt{2}\pi m_h^{*3/2}}{h^3}\sqrt{E_v-E}$
Fermi-Dirac distribution for electrons $f(E) = \dfrac{1}{1+\exp(\frac{E-E_F}{k_BT})}$
Fermi-Dirac distribution for holes $1-f(E)$
Boltzmann approximation $E-E_F \gg k_BT$
Effective density of state of electrons in 3D $N_c^{\text{3D}} = N_{e, \text{eff}} = 2 \left( \dfrac{2\pi m_e^* k_BT}{h^2} \right)^{3/2}$
Effective density of state of holes in 3D $N_v^{\text{3D}} = N_{h, \text{eff}} = 2 \left( \dfrac{2\pi m_h^* k_BT}{h^2} \right)^{3/2}$
Effective density of state in 2D
(use appropriate mass)
$N^{\text{2D}} = \dfrac{m^* k_B T}{\pi\hbar^2}$
Effective density of state in 1D
(use appropriate mass)
$N^{\text{1D}} = \sqrt{\dfrac{m^* k_B T}{2\pi\hbar^2}}$
Effective density of state in 0D
(use appropriate mass)
$N^{\text{0D}} = 2$
Electron (carrier) density $n_e(E) \approx N_{e, \text{eff}}\exp\left(-\dfrac{E_c-E_F}{k_BT}\right)$
Hole (carrier) density $n_h(E) \approx N_{h, \text{eff}}\exp\left(-\dfrac{E_v-E_F}{k_BT}\right)$
Intrinsic carrier density $n_i = \sqrt{N_cN_v}\exp\left(-\dfrac{E_g}{2k_BT}\right)$
Exciton separation distance $a_{\text{ex}} = a_0\dfrac{\varepsilon}{m_{\text{ex}}/m_e}$

Semiconductor doping

Description Equations
Variables oc - open circuit
bi - built-in
sc - short circuit
Solar cell conductivity
$\mu$ - electron mobility
$K \propto \mu n_i$
Open-circuit voltage (p-n solar cells)
$N_a$ - donor atom concentration
$\Delta n$ - excess electrons generated by photons (photocurrent)
$q=e$ - elementary charge
$\begin{aligned}V_{\text{oc}} &= \dfrac{E_{\mathrm{HL}}}{q} = \dfrac{E_{F_{n}} - E_{F_{p}}}{q} \cr &= \dfrac{k_BT}{q}\ln\left(\dfrac{(N_a+\Delta n)\Delta n}{n_i^2}\right) \cr &\approx \dfrac{k_BT}{q}\ln\left(\dfrac{I_{ph}}{I_0}\right)\end{aligned}$
Built-in voltage (p-n diode) $\begin{aligned}V_{\text{bi}} &= \dfrac{E_{F_{n}} - E_{F_{p}}}{q} \cr &=\dfrac{k_BT}{q}\ln\left(\dfrac{N_aN_d}{n_i^2}\right)\end{aligned}$
Relationship between open circuit and built-in voltages $V_{\text{oc}} < V_{\text{bi}} \newline V_{\text{bi}} = V_{\text{oc}} + \dfrac{2k_BT}{q}$
Depletion width $w = \sqrt{\dfrac{2\varepsilon_r \varepsilon_0 (N_a+N_d)}{qN_aN_d}V_{\text{eff}}}$
Fill factor $\mathrm{FF} = \dfrac{P_{\text{max}}}{V_{\text{oc}}I_{\text{sc}}}$
Efficiency $\eta = \dfrac{P_{\text{max}}}{P_{\text{in}}} = \dfrac{(\mathrm{FF})V_{\text{oc}}I_{\text{sc}}}{P_{\text{in}}}$

Molecular Modes and Energetic Properties

Energy: Electronic $\gg$ Vibrational $\gg$ Rotational $\gg$ Thermal noise ($k_BT$) $\gg$ Translational

Vibration modes of diatomic molecules

Description Equations
Spring potential $V(x) = \frac{1}{2}k_s x^2$
Frequency of quantum harmonic oscillator
$m_1 \gg m_2 = m$
$\nu = \dfrac{1}{2\pi}\sqrt{\dfrac{k_s}{m}}$
Energy levels of quantum harmonic oscillators $E_n = (n + \frac{1}{2})h\nu \newline n = 0, 1, 2, …$
Zero-point energy $E_0 = \frac{1}{2}h\nu$
Equidistant energy levels $\Delta E_{\text{vib}} = h\nu_{\text{vib}}$
Reduced mass $\mu = \dfrac{m_1m_2}{m_1+m_2}$
Frequency of quantum harmonic oscillator
$m_1 ~ m_2$
$\nu = c\tilde{\nu} = \dfrac{1}{2\pi}\sqrt{\dfrac{k_s}{\mu}}$
Vibrational wave number of quantum harmonic oscillator $\tilde{\nu} = \dfrac{1}{\lambda} = \dfrac{1}{2\pi c}\sqrt{\dfrac{k_s}{\mu}}$
Wave number of quantum harmonic oscillator $k_\lambda = \dfrac{2\pi}{\lambda} = \dfrac{1}{c}\sqrt{\dfrac{k_s}{\mu}}$
Dissociation energy $D_e$ and
actual dissociation energy $D_0$
$D_0 = D_e + \frac{1}{2}h\nu$
Morse potential
$r_e$ - equilibrium position, bond length
$a$ - inverse width of Morse potential
$V(r) = D_e (1 - e^{-a(r-r_e)})^2 \newline a = \sqrt{\dfrac{k_s}{2D_e}} = \omega\sqrt{\dfrac{\mu}{2D_e}}$
Vibrational temperature $\Theta_{\text{vib}} = \dfrac{h\nu}{k_B}$
Vibrational energy $E_{\text{vib}} = k_B\Theta_{\text{vib}}$

Rotational modes of diatomic molecules

Description Equations
Angular velocity (frequency) $\omega = 2\pi\nu$
Linear velocity $v_i = r_i\omega$
Moment of inertia $I = m_1r_1^2 + m_2r_2^2 = \mu R^2$
Kinetic energy of rigid rotor $E_k = \frac{1}{2}I\omega^2$
Rotational constant $B = \dfrac{\hbar^2}{2I} \newline \tilde{B} = \dfrac{B}{hc} = \dfrac{h}{8\pi^2 cI} \ [\mathrm{cm^{-1}}]$
Rotational temperature $\Theta_{\text{rot}} = \dfrac{B}{k_B} = \dfrac{\hbar^2}{2Ik_B}$
Rotational energy $E_{\text{rot}} = k_B\Theta_{\text{rot}}$
Energy of rigid rotor $\begin{aligned}E_J &= J(J+1)\dfrac{\hbar^2}{2I} \cr &= J(J+1)B \cr &= J(J+1)k_B\Theta_{\text{rot}}\end{aligned}$
Probability of being in a particular rotational energy state $f_J = (2J+1)\exp(-J(J+1)\Theta_{\text{rot}}/T)$
Energy for absorption $\Delta E_{\text{rot}}^{J\to J-1} = 2B(J+1)$
Energy for emission $\Delta E_{\text{rot}}^{J\to J+1} = 2BJ$
Separation between transitions $\Delta(\Delta E_{\text{rot}}^{J\to J-1}) = \Delta(\Delta E_{\text{rot}}^{J\to J+1}) = 2B$
Non-degenerate translational energy level in 1D $E_n^{\text{1D}} = \dfrac{n^2h^2}{2mL^2}$
Non-degenerate translational energy level in 3D $E_n^{\text{3D}} = \dfrac{h^2}{8m}\left(\dfrac{n_x^2}{L_x^2} + \dfrac{n_y^2}{L_y^2} + \dfrac{n_z^2}{L_z^2}\right)$

Polyatomic molecules

Degree of freedom Linear molecule
with $n$ atoms
Nonlinear molecule
with $n$ atoms
Translational $3$ $3$
Rotational $2$ $3$
Vibrational $3n-5$ $3n-6$
Description Equations
Intensity of IR vibrational signal $I_{\text{IR}} \propto \left(\dfrac{du_D}{d\xi}\right)^2$
Rotational motion energy $E_J = \dfrac{J(J+1)\hbar^2}{2I} \newline J = 0, 1, 2, …$
Degeneracy of rotational motion energy $g_J = 2J+1$
Moment of inertia $I = \sum\limits_{i=1}^n m_i (x_i - x_{cm})^2$

Lattice vibration and phonon

Description Equations
Harmonic potential $V(r_i-r_j) = \sum\limits_{i, j} \frac{1}{2}m\omega^2(r_i-r_j)$
Energy of phonon (lattice vibration) in 3D $E_{n_x, n_y, n_z}^{\text{3D}} = (n_x + n_y + n_z + \frac{3}{2})\hbar\omega \newline n = 0, 1, 2, …$
Debye frequency
Upper limit of dispersion frequency
$n$ - atom number density
$\omega_D = 6\pi^2 n c_{\text{sound}}^3$