Contents

CHEM E 480 Process Dynamics and Control

Intro to Process Dynamics and Control

  • Definitions

    • Process - conversion of feed materials to products using chemical and physical operations
      • Continuous, batch, semi-batch
    • Process dynamics - unsteady-state/transient process behavior
      • Start-ups, shutdowns, process disturbances, planned transitions
    • Process control - maintain a process at desired operating conditions
      • Utilize information flow
      • Impacts safety, environment, quality, economics
      • Manual control - control strategy implemented by a person
      • Automatic control - control strategy automated by computers
    • Types of variables
      • Set point - desired nominal value of controlled variable
      • Controlled variable - variable being regulated and maintained (to be controlled) at set point
      • Manipulated variable - variable that can be adjusted
      • Disturbance variable - variable that perturbs the system, changes controlled variable, but cannot be directly tuned
  • Classification of control strategies

    • Feedback control - controlled variable is measured to adjust manipulated variable (disturbance variable not measured)
      • Negative feedback - controller forces controlled variable toward set point
      • Positive feedback - controller forces controlled variable farther away from set point
      • ➕ Correction occurs regardless of source of disturbance
      • ➕ Reduces sensitivity of controlled variable to unmeasured disturbance and process changes
      • ➖ Correction only happens after controlled variable deviates set point (disturbance has occurred)
    • Feedforward control - disturbance variable measured to adjust manipulated variable (controlled variable not measured)
      • ➕ Correction happens before controlled variable deviates set point
      • ➖ Disturbance variable must be measured or accurately estimated
      • ➖ Do not account for unmeasured disturbances
      • ➖ Process model is required
    • Challenges
      • Systems are often nonlinear
      • Time delays are common at scale
      • Real systems are complex and interconnected
    • Iterative design
      • Formulate control objective
      • Identify variables
      • Model process
      • Implement control strategy
      • Tune controller
  • Types of control processes

    • Single-input/single-output (SISO) - one manipulated variables (input) and one controlled variables (output)
      • ➕ Easy to model and implement
      • ➖ Less control
    • Multiple-input/multiple-output (MIMO) - multiple manipulated variables (input) and multiple controlled variables (output)
      • ➕ Better control
      • ➖ Hard to model and implement
    • Balance robustness to disturbance and complexity of model
  • Hierarchy of control activities

    1. Measurement and actuation (< 1 s)
    2. Safety and environmental/equipment protection (< 1 s)
    3. Regulatory control (sec - min)
    4. Multivariable and constraint control (sec - min)
    5. Real-time optimization (hr - day)
    6. Planning and scheduling (day - month)

Theoretical Models of Chemical Processes

  • Dynamic models

    • Theoretical models - developed using principles of physics, chemistry, and biology
      • ➕ Physical insight into process behavior
      • ➕ Applicable over wide ranges of conditions
      • ➖ Expensive and time-consuming to develop
      • ➖ Model parameter not readily available
    • Empirical models - obtained by fitting experimental data
      • ➕ Easy to develop and use
      • ➖ Do not extrapolate to conditions beyond range
    • Semi-empirical models - numerical values of 1(+) parameters in a theoretical model are calculated from experimental data
      • ➕ Incorporate theoretical knowledge
      • ➕ Extrapolate over wider range of operating conditions
      • ➕ Requires less developmental effort
    • Improve process understanding
    • Train plant operating personnel
    • Develop control strategies for new processes
    • Optimize process operating conditions
  • General modeling principles

    • Simplifying assumptions balances model complexity and accuracy
    • Higher-order ODEs approximated by first-order processes have solutions with exponential and oscillatory response
      • Conservation of mass
      • Conservation of energy
      • Rate expressions
      • Equilibrium expressions
    • Normalized response - $x_N(t) = \dfrac{x(t) - x(0)}{x(\infty) - x(0)}$

Laplace Transforms

  • Definitions

    • Laplace transform - $\mathcal{L}[f(t)] = F(s) = \displaystyle\int_{0}^{\infin} e^{-st}f(t) \ dt$
    • Heaviside function (unit step function centered at $c$)
      • $u_c(t) = u(t-c) = \begin{cases} 0 & t < c \cr 1 & t \ge c \end{cases}$
    • Rectangular pulse function
      • $f(t) = \begin{cases} 0 & t<0 \\ h & t \in [0, t_w] \\ 0 & t \ge t_w \end{cases}$
    • Impulse (Dirac delta) function
  • Properties of Laplace transform

    • Laplace transform is linear
      • $\mathcal{L}[c_{1}f(t)+c_{2}g(t)] = c_{1}\mathcal{L}[f(t)] + c_{2}\mathcal{L}[g(t)]$
    • Laplace transforms of derivatives incorporate initial conditions
      • $\mathcal{L}[f'(t)] = sF(s) - f(0)$
      • $\mathcal{L}[f''(t)] = s^2F(s)-sf(0)-f'(0)$
      • $\mathcal{L}[f^{(n)}(t)] = s^nF(s)-s^{n-1}f(0) - s^{n-2}f^{(1)}(0) - … - f^{(n-1)}(0)$
    • Heaviside function has a simple Laplace transforms
      • $\mathcal{L}[u_c(t)] = \dfrac{e^{-sc}}{s}$
  • Translation theorems

    • Time domain translation
      • $\mathcal{L}[f(t-c)u_{c}(t)] = e^{-sc}\mathcal{L}[f(t)]$
      • $\mathcal{L}^{-1}[e^{-sc}\mathcal{L}[f(t)]] = f(t-c)u_c(t)$
    • Laplace domain translation
      • $\mathcal{L}[e^{ct}f(t)] = F(s-c)$
      • $\mathcal{L}^{-1}[F(s-c)] = e^{ct}f(t)$
  • Solving ODEs with Laplace transform

    1. Time domain: difficult ODE
      • Laplace transform ($t \to s$)
    2. Laplace domain: easy algebra problem
      • Solve the algebra problem
    3. Laplace domain: solution to algebra problem
      • Inverse Laplace transform ($s \to t$)
    4. Time domain: solution of difficult ODE
      • Problem solved
  • Partial fraction decomposition

    • Heaviside expansion
      • $Y(s) = \dfrac{N(s)}{D(s)} = \dfrac{N(s)}{\displaystyle \prod_{i=1}^n (s+b_i)} = \displaystyle \sum_{i=1}^n \dfrac{\alpha_i}{s + b_i}$

Fundamental signals

Inverse L.T.
$f(t)$
Laplace Transform
$F(s)$
Inverse L.T.
$f(t)$
Laplace Transform
$F(s)$
$1$ $\dfrac{1}{s}$ $\delta(t)$ $1$
$S(t) \equiv u_0(t)$ $\dfrac{1}{s}$ $S(t-c) \equiv u_{c}(t)$ $\dfrac{e^{-sc}}{s}$
$e^{-at}$ $\dfrac{1}{s+a}$ $t$ $\dfrac{1}{s^2}$
$\dfrac{1}{a}e^{-t/a}$ $\dfrac{1}{as+1}$ $t^{n}$ $\dfrac{n!}{s^{n+1}}$
$1 - e^{t/a}$ $\dfrac{1}{s(as+1)}$ $\sqrt{t}$ $\dfrac{\sqrt{\pi}}{2s^{3/2}}$
$e^{-at+b}$ $\dfrac{e^b}{a+s}$ $te^{-at}$ $\dfrac{1}{(a+s)^2}$
$t^ne^{-at}$ $\dfrac{n!}{(a+s)^{n+1}}$

Oscillatory signals

Inverse L.T.
$f(t)$
Laplace Transform
$F(s)$
Inverse L.T.
$f(t)$
Laplace Transform
$F(s)$
$\sin(at)$ $\dfrac{a}{s^{2}+a^{2}}$ $t\sin(at)$ $\dfrac{2as}{(s^{2}+a^{2})^{2}}$
$\cos(at)$ $\dfrac{s}{s^{2}+a^{2}}$ $t\cos(at)$ $\dfrac{s^{2}-a^{2}}{(s^{2}+a^{2})^{2}}$
$\sin(at)-at\cos(at)$ $\dfrac{2a^{3}}{(s^{2}+a^{2})^{2}}$ $\cos(at)-at\sin(at)$ $\dfrac{s(s^{2}-a^{2})}{(s^{2}+a^{2})^{2}}$
$\sin(at)+at\cos(at)$ $\dfrac{2as^{2}}{(s^{2}+a^{2})^{2}}$ $\cos(at)+at\sin(at)$ $\dfrac{s(s^{2}+3a^{2})}{(s^{2}+a^{2})^{2}}$
$\sinh(at)$ $\dfrac{a}{s^{2}-a^{2}}$ $\sin(at+b)$ $\dfrac{s\sin(b)+a\cos(b)}{s^2+a^2}$
$\cosh(at)$ $\dfrac{s}{s^{2}-a^{2}}$ $\cos(at+b)$ $\dfrac{s\cos(b)-a\sin(b)}{s^2+a^2}$
$e^{at}\sin(bt)$ $\dfrac{b}{(s-a)^2+b^2}$ $e^{at}\sinh(bt)$ $\dfrac{b}{(s-a)^2-b^2}$
$e^{at}\cos(bt)$ $\dfrac{s-a}{(s-a)^2+b^2}$ $e^{at}\cosh(bt)$ $\dfrac{s-a}{(s-a)^2-b^2}$

Convenient inverse signals

Inverse L.T.
$f(t)$
Laplace Transform
$F(s)$
Comment
$\dfrac{t^{n-1} e^{-b t}}{(n-1) !}(n>0)$ $\dfrac{1}{(s+b)^{n}}$
$\dfrac{1}{\tau^{n}(n-1) !} t^{n-1} e^{-t / \tau}$ $\dfrac{1}{(\tau s+1)^{n}}$
$\dfrac{1}{b_{1}-b_{2}}\left(e^{-b_{2} t}-e^{-b_{1} t}\right)$ $\dfrac{1}{\left(s+b_{1}\right)\left(s+b_{2}\right)}$
$\dfrac{1}{\tau_{1}-\tau_{2}}\left(e^{-t / \tau_{1}}-e^{-t / \tau_{2}}\right)$ $\dfrac{1}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$
$\dfrac{b_{3}-b_{1}}{b_{2}-b_{1}} e^{-b_{1} t}+\dfrac{b_{3}-b_{2}}{b_{1}-b_{2}} e^{-b_{2} t}$ $\dfrac{s+b_{3}}{\left(s+b_{1}\right)\left(s+b_{2}\right)}$
$\dfrac{1}{\tau_{1}} \dfrac{\tau_{1}-\tau_{3}}{\tau_{1}-\tau_{2}} e^{-t / \tau_{1}}+\dfrac{1}{\tau_{2}} \dfrac{\tau_{2}-\tau_{3}}{\tau_{2}-\tau_{1}} e^{-t / \tau_{2}}$ $\dfrac{\tau_{3} s+1}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$
$\dfrac{1}{\tau \sqrt{1-\zeta^{2}}} e^{-\zeta t / \tau} \sin \left(\sqrt{1-\zeta^{2}} t / \tau\right)$ $\dfrac{1}{\tau^{2} s^{2}+2 \zeta \tau s+1}$ $(0 \leq\vert\zeta\vert<1)$
$1+\dfrac{1}{\tau_{2}-\tau_{1}}\left(\tau_{1} e^{-t / \tau_{1}}-\tau_{2} e^{-t / \tau_{2}}\right)$ $\dfrac{1}{s\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$ $(\tau_1 \not= \tau_2)$
$1-\dfrac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta t / \tau} \sin \left[\sqrt{1-\zeta^{2}} t / \tau+\psi\right]$ $\dfrac{1}{s\left(\tau^{2} s^{2}+2 \zeta \tau s+1\right)}$ $\footnotesize\begin{aligned}\psi=\tan ^{-1} \dfrac{\sqrt{1-\zeta^{2}}}{\zeta}\end{aligned} \newline (0 \leq\vert\zeta\vert<1)$
$\begin{aligned}1-e^{-\zeta t / \tau}\left[\cos \left(\sqrt{1-\zeta^{2}} t / \tau\right)+\dfrac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \left(\sqrt{1-\zeta^{2}} t / \tau\right)\right]\end{aligned}$ $\dfrac{1}{s\left(\tau^{2} s^{2}+2 \zeta \tau s+1\right)}$ $(0 \leq\vert\zeta\vert<1)$
$1+\dfrac{\tau_{3}-\tau_{1}}{\tau_{1}-\tau_{2}} e^{-t / \tau_{1}}+\dfrac{\tau_{3}-\tau_{2}}{\tau_{2}-\tau_{1}} e^{-t / \tau_{2}}$ $\dfrac{\tau_{3} s+1}{s\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)}$ $(\tau_1 \not= \tau_2)$