CHEM E 465 Reactor Design

Contents
Description Equations
Equilibrium constant and concentration Kc=iCiνiK_c = \prod_i C_i^{\nu_i}
Equilibrium constant and rate constant Ki=kikiK_i = \dfrac{k_i}{k_{-i}}
van’t Hoff equation
Δhrxnf(T)\Delta h_{\mathrm{rxn}}^\circ \not= f(T)
dlnKdT=ΔhrxnRT2\dfrac{d \ln K}{dT} = \dfrac{\Delta h_{\mathrm{rxn}}^\circ}{RT^2}
T dependence of equilibrium constant ln(K2K1)=ΔhrxnR(1T21T1)\ln \left(\dfrac{K_2}{K_1}\right)=-\dfrac{\Delta h_{\mathrm{rxn}}^\circ}{R}\left(\dfrac{1}{T_2}-\dfrac{1}{T_1}\right)
Description Equations
General reaction aA+bBkcC+dD\ce{aA + bB ->[\mathit{k}] cC + dD}
Relative reaction rates rAa=rBb=rCc=rDd\dfrac{-r_A}{a} = \dfrac{-r_B}{b} = \dfrac{-r_C}{c} = \dfrac{-r_D}{d}
Power law rA=kCAaCBbr_A = -k C_A^a C_B^b
Unit of rate constant k [=] M1n/sk \ [=] \ \mathrm{M^{1-n}/s}
Arrhenius equation
Eaf(T)E_a \not= f(T)
dlnkdT=EaRT2\dfrac{d \ln k}{dT} = \dfrac{E_a}{RT^2}
Arrhenius equation k=Aexp(EaRT)k = A\exp\left(-\dfrac{E_a}{RT}\right)
T dependence of rate constant ln(k2k1)=EaR(1T21T1)\ln \left(\dfrac{k_2}{k_1}\right)=-\dfrac{E_a}{R}\left(\dfrac{1}{T_2}-\dfrac{1}{T_1}\right)
Arrhenius plot lnk=lnAEaR1T\ln k = \ln A - \dfrac{E_a}{R}\dfrac{1}{T}
Note Increase EaE_a, increase kk’s sensitivity to T
Collision theory kTexp(E0RT)k \propto \sqrt{T}\exp\left(-\dfrac{E_0}{RT}\right)
Transition state theory kTexp(ΔHRT)k \propto T\exp\left(-\dfrac{\Delta H^*}{RT}\right)
  1. Reactor design equation (mole balance): ri=f(n)=f(X)r_i = f(n) = f(X)
  2. Rate law: ri=f(Ci)r_i = f(C_i)
  3. Stoichiometry: Ci=f(X)C_i = f(X)
  4. Combine: ri=f(X)r_i = f(X)
Description Equations
General mole balance inout+generation=accumulationn˙i0n˙i+Gi=dnidt\begin{aligned}&\mathrm{in} &&- \mathrm{out} &&+ \mathrm{generation} &&= \mathrm{accumulation} \\ &\dot{n}_{i0} &&- \dot{n}_i &&+ G_i &&= \dfrac{dn_i}{dt}\end{aligned}
General generation term Gi=ridVG_i = \int r_i dV
Spatially uniform generation term Gi=riVG_i = r_i V
Conversion XiX=ni0nini0=n˙i0n˙in˙i0X_i \equiv X = \dfrac{n_{i0} - n_{i}}{n_{i0}} = \dfrac{\dot{n}_{i0} - \dot{n}_{i}}{\dot{n}_{i0}}
Mole/flow rate in terms of conversion ni=ni0(1X)n˙i=n˙i0(1X)n_i = n_{i0} (1 - X) \newline \dot{n}_i = \dot{n}_{i0} (1 - X)
Heterogeneous reaction rate ri=ρbrir_i = \rho_b r_i'
Reactor Design Equations Integral Form
Batch
★ Perfectly mixed
riV=dnidt=ni0dXdt\begin{aligned}r_i V = \dfrac{dn_i}{dt} = -n_{i0}\dfrac{dX}{dt}\end{aligned} t=ni1ni0dniriV=ni00XdXriV\begin{aligned}t = \displaystyle\int_{n_{i1}}^{n_{i0}} \dfrac{dn_i}{-r_i V} = n_{i0} \displaystyle\int_0^X \dfrac{dX}{-r_i V}\end{aligned}
CSTR
★ Perfectly mixed, steady-state
V=n˙i0n˙iri=n˙i0XriV = \dfrac{\dot{n}_{i0} - \dot{n}_i}{-r_i} = \dfrac{\dot{n}_{i0}X}{-r_i} -
PFR
★ Steady state
★ Plug flow, no radial dependence
ri=dn˙idV=n˙i0dXdVr_i = \dfrac{d\dot{n}_i}{dV} = -\dot{n}_{i0}\dfrac{dX}{dV} V=n˙in˙i0dn˙iri=n˙i00XdXriV = \displaystyle\int_{\dot{n}_i}^{\dot{n}_{i0}}\dfrac{d\dot{n}_i}{-r_i} = \dot{n}_{i0} \displaystyle\int_0^X \dfrac{dX}{-r_i}
PBR
★ Steady state
ri=dn˙idm=n˙i0dXdmr_i' = \dfrac{d\dot{n}_i}{dm} = -\dot{n}_{i0}\dfrac{dX}{dm} m=n˙in˙i0dn˙iri=n˙i00XdXrim = \displaystyle\int_{\dot{n}_i}^{\dot{n}_{i0}}\dfrac{d\dot{n}_i}{-r_i'} = \dot{n}_{i0} \displaystyle\int_0^X \dfrac{dX}{-r_i'}
Semi-batch reactor ri=dnidtn˙i0V(t)r_i = \dfrac{\dfrac{dn_i}{dt} - \dot{n}_{i0}}{V(t)} -
Description Equations
Levenspiel plot n˙i0ri\dfrac{\dot{n}_{i0}}{-r_i} vs. XX
CSTR volume V=n˙i0XriV = \dfrac{\dot{n}_{i0}X}{-r_i} = Area of rectangle
PFR volume V=n˙i00XdXriV = \dot{n}_{i0} \displaystyle\int_0^X \dfrac{dX}{-r_i} = Area under Levenspiel plot
Reaction of order > 0 VCSTR>VPFRV_{\mathrm{CSTR}} > V_\mathrm{PFR} (Choose PFR)
Reaction of order < 0 VCSTR<VPFRV_{\mathrm{CSTR}} < V_\mathrm{PFR} (Choose CSTR)
Reactor Type Advantage Disadvantage
Batch - High conversion - High labor cost and downtime
- Difficult to scale up
- Batch-to-batch variability
CSTR - Good T control - Hard to get high conversion
PFR - Easy maintenance
- High conversion per unit volume
- Difficult for T control
Species Initial Change Remaining
A\ce{A} nA0n_{{A}0} nA0X-n_{A0}X nA=nA0(1X)n_A = n_{A0}(1-X)
B\ce{B} nB0n_{B0} banA0X-\frac{b}{a}n_{A0}X nB=nA0(ΘBbaX)n_B = n_{A0}(\Theta_B - \frac{b}{a}X)
C\ce{C} nC0n_{C0} canA0X\frac{c}{a}n_{A0}X nC=nA0(ΘC+caX)n_C = n_{A0}(\Theta_C + \frac{c}{a}X)
D\ce{D} nD0n_{D0} danA0X\frac{d}{a}n_{A0}X nD=nA0(ΘD+daX)n_D = n_{A0}(\Theta_D + \frac{d}{a}X)
I\ce{I} nI0n_{I0} 00 nI=nI0n_I = n_{I0}
Total nT0n_{T0} δnA0X\delta n_{A0}X nT=nT0+δnA0Xn_T = n_{T0} + \delta n_{A0}X
Description Equations
Sample reaction A+ba BcaC+daD\color{blue}\ce{A + \dfrac{b}{a} B -> \dfrac{c}{a}C + \dfrac{d}{a}D}
total mol changemol A reacted\dfrac{\text{total mol change}}{\text{mol A reacted}} δ=νi=da+caba1\delta = \sum \nu_i = \dfrac{d}{a} + \dfrac{c}{a} - \dfrac{b}{a} - 1
mol Z initiallymol A initially\dfrac{\text{mol Z initially}}{\text{mol A initially}} ΘZ=nZ0nA0=n˙Z0n˙A0=yZ0yA0=CZ0CA0\Theta_Z = \dfrac{n_{Z0}}{n_{A0}} = \dfrac{\dot{n}_{Z0}}{\dot{n}_{A0}}= \dfrac{y_{Z0}}{y_{A0}}= \dfrac{C_{Z0}}{C_{A0}}
total mol change for X=1mol feed\dfrac{\text{total mol change for } X = 1}{\text{mol feed}} ε=yA0δ=n˙Tfn˙T0n˙T0\varepsilon = y_{A0}\delta = \dfrac{\dot{n}_{Tf} - \dot{n}_{T0}}{\dot{n}_{T0}}
Concentration Ci=niV=n˙iV˙C_i = \dfrac{n_i}{V} = \dfrac{\dot{n}_i}{\dot{V}}
Molar fraction yi=n˙in˙Ty_i = \dfrac{\dot{n}_i}{\dot{n}_T}
Pressure ratio p=PP0p = \dfrac{P}{P_0}
Description Equations
Molar flow rate n˙i=n˙A0(ΘiνiX)\dot{n}_i = \dot{n}_{A0} (\Theta_i - \nu_i X)
Concentration
★ Constant PVTPVT
Ci=CA0(ΘiνiX)C_i = C_{A0} (\Theta_i - \nu_i X)
Volumetric flow rate V˙=V˙0(n˙Tn˙T0)(P0P)(TT0)=V˙0(1+εX)(P0P)(TT0)\begin{aligned}\dot{V} &= \dot{V}_0 \left(\dfrac{\dot{n}_T}{\dot{n}_{T0}}\right) \left(\dfrac{P_0}{P}\right) \left(\dfrac{T}{T_0}\right) \\ &= \dot{V}_0 (1 + \varepsilon X)\left(\dfrac{P_0}{P}\right) \left(\dfrac{T}{T_0}\right) \end{aligned}
Concentration Ci=n˙iV˙=CA0(n˙in˙T)(PP0)(T0T)=CA0yip(T0T)=CA0(Θi+νiX)1+εX(PP0)(T0T)\begin{aligned}C_i &= \dfrac{\dot{n}_i}{\dot{V}} \\ &= C_{A0} \left(\dfrac{\dot{n}_i}{\dot{n}_{T}}\right) \left(\dfrac{P}{P_0}\right) \left(\dfrac{T_0}{T}\right) \\ &= C_{A0} y_i p \left(\dfrac{T_0}{T}\right) \\ &= \dfrac{C_{A0} (\Theta_i + \nu_i X)}{1+\varepsilon X} \left(\dfrac{P}{P_0}\right) \left(\dfrac{T_0}{T}\right) \end{aligned}
Description Equations
Characteristic reaction time (1st order) tR=1kln(11X)t_R = \dfrac{1}{k}\ln\left(\dfrac{1}{1-X}\right)
Characteristic reaction time (2nd order) tR=1kCA0X1Xt_R = \dfrac{1}{k C_{A0}}\dfrac{X}{1-X}
Total time Total = Fill + Heat + Reaction + Clean
Description Equations
Space time τ=VV˙=CA0XrA\tau = \dfrac{V}{\dot{V}} = \dfrac{C_{A0}X}{-r_A}
Damkohler number Da=rA0Vn˙A0=rate at entrancemolar flow at entrance=reaction rateconvective mass transport rate\begin{aligned}\mathrm{Da} &= \dfrac{-r_{A0}V}{\dot{n}_{A0}} \\ &= \dfrac{\text{rate at entrance}}{\text{molar flow at entrance}} \\ &= \dfrac{\text{reaction rate}}{\text{convective mass transport rate}}\end{aligned}
Damkohler number and conversion Da<0.1,X<0.1Da>10,X>0.9\mathrm{Da} < 0.1, X < 0.1 \newline \mathrm{Da} > 10, X > 0.9
Reaction, Reactor Damkohler number Dai\mathrm{Da}_i Space time τ\tau Conversion XX Concentration CiC_i
1st order, single CSTR τk=X1X\begin{aligned}\tau k = \dfrac{X}{1-X}\end{aligned} Xk(1X)\dfrac{X}{k(1-X)} τk1+τk\dfrac{\tau k}{1 + \tau k} CA01+τk\dfrac{C_{A0}}{1 + \tau k}
2nd order, single CSTR τkCA0\tau k C_{A0} XkCA0(1X)2\dfrac{X}{kC_{A0}(1-X)^2} 1+2Da21+4Da22Da2\dfrac{1 + 2\mathrm{Da}_2 - \sqrt{1 + 4\mathrm{Da}_2}}{2\mathrm{Da}_2} CA01+1+4Da22Da2C_{A0} \dfrac{-1 + \sqrt{1 + 4\mathrm{Da}_2}}{2\mathrm{Da}_2}
1st order, CSTR series - - 11(1+Da1)n1 - \dfrac{1}{(1 + \mathrm{Da}_1)^n} CA0(1+Da1)n\dfrac{C_{A0}}{(1 + \mathrm{Da}_1)^n}
Description Equations
Reactor volume for 2nd order gas phase rxn V=V˙A0kCA0[2ε(1+ε)ln(1X)+ε2X+(1+ε)2X1X]V = \dfrac{\dot{V}_{A0}}{kC_{A0}} \left[ 2\varepsilon(1 + \varepsilon) \ln(1-X) + \varepsilon^2 X + \dfrac{(1 + \varepsilon)^2 X}{1-X} \right]
Ergun equation dPdz=GρgcDP(1ϕϕ3)[150(1ϕ)μDP+1.75G]\dfrac{dP}{dz} = \dfrac{G}{\rho g_c D_P}\left(\dfrac{1 - \phi}{\phi^3}\right) \left[\dfrac{150(1-\phi)\mu}{D_P} + 1.75G\right]
Porosity (void fraction) ϕ=void volumetotal bed volume\phi = \dfrac{\text{void volume}}{\text{total bed volume}}
PBR pressure drop dPdz=β0(P0P)(TT0)(n˙Tn˙T0)\dfrac{dP}{dz} = -\beta_0 \left(\dfrac{P_0}{P}\right)\left(\dfrac{T}{T_0}\right)\left(\dfrac{\dot{n}_T}{\dot{n}_{T0}}\right)
Packed bed property β0=G(1ϕ)ρ0gcDPϕ3[150(1ϕ)μDP+1.75G][=]Pam\beta_0 = \dfrac{G(1-\phi)}{\rho_0 g_c D_P \phi^3}\left[\dfrac{150(1-\phi)\mu}{D_P} + 1.75G \right] [=] \mathrm{\dfrac{Pa}{m}}
Bulk density of catalyst ρb=ρc(1ϕ)\rho_b = \rho_c(1-\phi)
Catalyst mass m=(1ϕ)Aczρc=Aczρbm = (1-\phi)A_c z\rho_c = A_c z \rho_b
Ergun equation for packed bed (multiple reaction) dpdm=α2pTT0n˙Tn˙T0\dfrac{dp}{dm} = -\dfrac{\alpha}{2p}\dfrac{T}{T_0}\dfrac{\dot{n}_T}{\dot{n}_{T0}}
α=2β0Acρc(1ϕ)P0[=]kg1\alpha = \dfrac{2\beta_0}{A_c \rho_c (1-\phi)P_0} [=] \mathrm{kg^{-1}}
Ergun equation for packed bed (single reaction) dpdm=α2p(1+εX)TT0\dfrac{dp}{dm} = -\dfrac{\alpha}{2p} (1+\varepsilon X) \dfrac{T}{T_0}
System of pressure and conversion ODEs {dXdm=F1(X,p)Reactor designdpdm=F2(X,p)Ergun equation\begin{cases}\dfrac{dX}{dm} = F_1(X, p) & \text{Reactor design} \\ \dfrac{dp}{dm} = F_2(X, p) & \text{Ergun equation}\end{cases}
Pressure ratio
ε=0\varepsilon = 0 or εX1\varepsilon X \ll 1, isothermal
p=1αm=12β0P0zp = \sqrt{1-\alpha m} = \sqrt{1 - \dfrac{2\beta_0}{P_0}z}
Pressure drop in pipes p=1αpVp = \sqrt{1 - \alpha_p V}
Pipe factor αp=4fG2Acρ0P0D\alpha_p = \dfrac{4 f G^2}{A_c \rho_0 P_0 D}
Description Equations
Power law rA=kCAαCBβr_A = -k C_A^\alpha C_B^\beta
Integral method dCAdt=kCAα\dfrac{dC_A}{dt} = -kC_A^\alpha
0th order rxn CA=CA0ktC_A = C_{A0} - kt
1st order rxn lnCA0CA=ktlnCA=lnCA0kt\ln\dfrac{C_{A0}}{C_A} = kt \\ \ln C_A = \ln C_{A0} - kt
2nd order rxn 1CA=kt+1CA0\dfrac{1}{C_A} = kt + \dfrac{1}{C_{A0}}
Differential method ln(dCAdt)=lnkA+αlnCA\ln\left(-\dfrac{dC_A}{dt}\right) = \ln k_A + \alpha \ln C_A
Description Equations
rA=V˙0CA0V˙CAPΔm=V˙A0XΔm=V˙PΔm-r_A' = \dfrac{\dot{V}_0 C_{A0} - \dot{V} C_{AP}}{\Delta m} = \dfrac{\dot{V}_{A0}X}{\Delta m} = \dfrac{\dot{V}_P}{\Delta m}
Description Equations
Parallel (competing) reactions AkX1BAkX2C\ce{A ->[\mathit{k}_1] B} \newline \ce{A ->[\mathit{k}_2] C}
Series (consecutive) reactions AkX1BkX2C\ce{A ->[\mathit{k}_1] B ->[\mathit{k}_2] C}
Independent reactions AB+CDE+F\ce{A -> B + C} \newline \ce{D -> E + F}
Complex reactions A+BC+DA+CEEG\ce{A + B -> C + D} \newline \ce{A + C -> E} \newline \ce{E -> G}
Description Equations
Instantaneous selectivity based on rate SD/U=rDrU=rate of formation of Drate of formation of US_{D/U} = \dfrac{r_D}{r_U} = \dfrac{\text{rate of formation of D}}{\text{rate of formation of U}}
Overall selectivity based on flow rate S~D/U=n˙Dn˙U=nDnU=exit molar flow rate of Dexit molar flow rate of U\tilde{S}_{D/U} = \dfrac{\dot{n}_D}{\dot{n}_U} = \dfrac{n_D}{n_U} = \dfrac{\text{exit molar flow rate of D}}{\text{exit molar flow rate of U}}
Selectivity of CSTR SD/U=S~D/US_{D/U} = \tilde{S}_{D/U}
Instantaneous yield based on rate YD=rDrAY_D = -\dfrac{r_D}{r_A}
Overall yield based on flow rate Y~D=n˙Dn˙A0n˙A=nDnA0nA\tilde{Y}_D = \dfrac{\dot{n}_D}{\dot{n}_{A0} - \dot{n}_A} = \dfrac{n_D}{n_{A0} - n_A}
Conversion of batch and flow reactor XA=n˙A0n˙An˙A0X_A = \dfrac{\dot{n}_{A0} - \dot{n}_{A}}{\dot{n}_{A0}}
Conversion of semi-batch reactor XA=CA0V0CAVCA0VX_A = \dfrac{C_{A0} V_0 - C_A V}{C_{A0}V}
Conversion of semi-batch reactor XB=n˙B0tCBVn˙B0tX_B = \dfrac{\dot{n}_{B0} t - C_B V}{\dot{n}_{B0} t}
Description Equations
Concentration dependence of instantaneous selectivity SD/U=rDrU=kDkUCAα1α2S_{D/U} = \dfrac{r_D}{r_U} = \dfrac{k_D}{k_U}C_A^{\alpha_1 - \alpha_2}
α1>α2\alpha_1 > \alpha_2 CA,SD/U\uparrow C_A, \uparrow S_{D/U}
α1<α2\alpha_1 < \alpha_2 CA,SD/U\downarrow C_A, \uparrow S_{D/U}
Temperature dependence of instantaneous selectivity SD/U=rDrU kDkU=ADAUexp(EDEURT)S_{D/U} = \dfrac{r_D}{r_U} ~ \dfrac{k_D}{k_U} = \dfrac{A_D}{A_U}\exp\left(-\dfrac{E_D - E_U}{RT}\right)
ED>EUE_D > E_U T,SD/U\uparrow T, \uparrow S_{D/U}
ED<EUE_D < E_U T,SD/U\downarrow T, \uparrow S_{D/U}
Description Equations
Pseudo-steady-state hypothesis rA=ri,A=0r_{A*} = \sum r_{i, A*} = 0
Rate law Mechanism (rule of thumb)
Species concentration in denominator Species collision with active intermediate
Constant in denominator Reaction of spontaneous decomposition of active intermediate
Species concentration in numerator Species produce active intermediate
Description Equations
Overall reaction E+SE+P\ce{E + S -> E + P}
Reaction mechanism S+EkX1kX1ESES+WkX2P+E\ce{S + E <=>[\mathit{k}_1][\mathit{k}_{-1}] ES} \newline \ce{ES + W ->[\mathit{k}_{2}] P + E}
Enzyme balance [EXT]=[E]+[ES][E]=[EXT][ES]\ce{[E_T] = [E] + [ES]} \newline \ce{[E] = [E_T] - [ES]}
Pseudo-steady-state approximation rES=k1[S][E]k1[ES]k2[ES][W]=0rES=k1[S]([EXT][ES])k1[ES]k2[ES][W]=0[ES]=k1[S][EXT]k1[S]+k1+k2[W]\begin{aligned}r_{\ce{ES}} &= k_1\ce{[S][E]} - k_{-1} \ce{[ES]} - k_2 \ce{[ES][W]} = 0 \\ r_{\ce{ES}} &= k_1\ce{[S]([E_T] - [ES])} - k_{-1} \ce{[ES]} - k_2 \ce{[ES][W]} = 0 \end{aligned} \newline \ce{[ES]} = \dfrac{k_1 \ce{[S][E_T]}}{k_1 \ce{[S]} + k_{-1} + k_2 \ce{[W]}}
Turnover number (# substrates converted to product per unit time on one enzyme at saturation) kcat=k2[W]k_{\mathrm{cat}} = k_2 \ce{[W]}
Michaelis-Menten constant (attraction of enzyme of its substrate, [Substrate] which rate of rxn is 1/2 max) KM=kcat+k1k1K_M = \dfrac{k_{\mathrm{cat}} + k_{-1}}{k_1}
Maximum rate Vmax=kcat[EXT]V_{\max} = k_{\mathrm{cat}} \ce{[E_T]}
Michaelis-Menten equation
Rate of reaction
rP=k2[ES][W]=k1k2[S][EXT][W]k1[S]+k1+k2[W]=kcat[S][EXT]KM+[S]=Vmax[S]KM+[S]\begin{aligned}r_{\ce{P}} &= k_{2} \ce{[ES][W]} \\ &= \dfrac{k_1 k_{2} \ce{[S][E_T][W]}}{k_1 \ce{[S]} + k_{-1} + k_2 \ce{[W]}} \\ &= \dfrac{k_{\mathrm{cat}} \ce{[S][E_T]}}{K_M + \ce{[S]}} \\ &= \dfrac{V_{\max} \ce{[S]}}{K_M + \ce{[S]}} \end{aligned}
Lineweaver-Burk equation 1rP=KMVmax1[S]+1Vmax\dfrac{1}{r_{\ce{P}}} = \dfrac{K_M}{V_{\max}}\dfrac{1}{\ce{[S]}} + \dfrac{1}{V_{\max}}
Eadie-Hofstee equation rP=VmaxKMrP[S]r_{\ce{P}} = V_{\max} - K_M\dfrac{r_{\ce{P}}}{\ce{[S]}}
Hanes-Woolf equation [S]rP=KMVmax+1Vmax[S]\dfrac{\ce{[S]}}{r_{\ce{P}}} = \dfrac{K_M}{V_{\max}} + \dfrac{1}{V_{\max}}\ce{[S]}
Description Equations
Overall reaction E+SE+P\ce{E + S -> E + P}
Reaction mechanism S+EESPEP+E\ce{S + E <=> ES <=> PE <=> P + E}
Briggs-Haldane equation rP=Vmax([S][P]/KC)[S]+Kmax+KP[P]r_{\ce{P}} = \dfrac{V_{\max}(\ce{[S]} - \ce{[P]} / K_C)}{\ce{[S]} + K_{\max} + K_P \ce{[P]}}
Description Equations
Time t=KMVmaxln([A]X0[A])+[A]X0[A]Vmax=KMVmaxln(11X)+[A]X0XVmax\begin{aligned}t &= \dfrac{K_M}{V_{\max}}\ln\left(\dfrac{\ce{[A]_0}}{\ce{[A]}}\right) + \dfrac{\ce{[A]_0 - [A]}}{V_{\max}} \\ &= \dfrac{K_M}{V_{\max}} \ln\left(\dfrac{1}{1-X}\right) + \dfrac{\ce{[A]_0}X}{V_{\max}} \end{aligned}
Linearized form 1tln([A]X0[A])=VmaxKM[A]X0[A]KMt\dfrac{1}{t} \ln\left(\dfrac{\ce{[A]_0}}{\ce{[A]}}\right) = \dfrac{V_{\max}}{K_M} - \dfrac{\ce{[A]_0 - [A]}}{K_M t}
Description Equations
Reaction mechanism E+SESESE+PE+IEI (inactive)\ce{E + S <=> ES} \newline \ce{ES -> E + P} \newline \ce{E + I <=> EI} \text{ (inactive)}
Reaction rate rP=Vmax[S][S]+KM[1+[I]KI]r_{\ce{P}} = \dfrac{V_{\max}\ce{[S]}}{\ce{[S]} + K_M \left[1 + \dfrac{\ce{[I]}}{K_I}\right]}
Lineweaver-Burk form
KI,slope\uparrow K_I, \uparrow \text{slope}
1rP=1[S][KMVmax[1+[I]KI]]+1Vmax\dfrac{1}{r_{\ce{P}}} = \dfrac{1}{\ce{[S]}} \left[\dfrac{K_M}{V_{\max}} \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right] \right] + \dfrac{1}{V_{\max}}
Description Equations
Reaction mechanism E+SESESE+PES+IESI (inactive)\ce{E + S <=> ES} \newline \ce{ES -> E + P} \newline \ce{ES + I <=> ESI} \text{ (inactive)}
Reaction rate rP=Vmax[S]KM+[S][1+[I]KI]r_{\ce{P}} = \dfrac{V_{\max}\ce{[S]}}{K_M + \ce{[S]} \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right]}
Lineweaver-Burk form
KI,intercept\uparrow K_I, \uparrow \text{intercept}
1rP=1[S]KMVmax+1Vmax[1+[I]KI]\dfrac{1}{r_{\ce{P}}} = \dfrac{1}{\ce{[S]}} \dfrac{K_M}{V_{\max}} + \dfrac{1}{V_{\max}} \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right]
Description Equations
Reaction mechanism E+SESESE+PE+IEI (inactive)ES+IESI (inactive)S+EIESI (inactive)\ce{E + S <=> ES} \newline \ce{ES -> E + P} \newline \ce{E + I <=> EI} \text{ (inactive)} \newline \ce{ES + I <=> ESI} \text{ (inactive)} \newline \ce{S + EI <=> ESI} \text{ (inactive)}
Reaction rate rP=Vmax[S]([S]+KM)[1+[I]KI]r_{\ce{P}} = \dfrac{V_{\max}\ce{[S]}}{(\ce{[S]} + K_M) \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right]}
Lineweaver-Burk form
KI,slope,intercept\uparrow K_I, \uparrow \text{slope}, \uparrow \text{intercept}
1rP=1[S]KMVmax[1+[I]KI]+1Vmax[1+[I]KI]\dfrac{1}{r_{\ce{P}}} = \dfrac{1}{\ce{[S]}} \dfrac{K_M}{V_{\max}} \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right] + \dfrac{1}{V_{\max}} \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right]
Reaction Mechanism Rate Law
Adsorption A+XAX\ce{A + ^* <=> A^*} rA=kA[PA[XX22][AX]KA]r_{\ce{A}} = k_{\ce{A}}\left[P_{\ce{A}} \ce{[^*] - \dfrac{\ce{[A^*]}}{K_{\ce{A}}}}\right]
Desorption AXA+X\ce{A^* <=> A + ^*} rD=kD[[AX]PA[XX22]KD]r_{\ce{D}} = k_{\ce{D}}\left[\ce{[A^*] - \dfrac{P_{\ce{A}} \ce{[^*]}}{K_{\ce{D}}}}\right]
Single site surface rxn AXkXSkXSBX\ce{A^* <=>[\mathit{k}_S][\mathit{k}_{-S}] B^*} rS=kS[[AX][BX]KS]r_{\ce{S}} = k_{\ce{S}} \left[\ce{[A^*]} - \dfrac{\ce{[B^*]}}{K_{\ce{S}}}\right]
Dual site (I) surface rxn AX+XkXSkXSBX+X\ce{A^* + ^* <=>[\mathit{k}_S][\mathit{k}_{-S}] B^* + ^*} rS=kS[[AX][XX22][BX][XX22]KS]r_{\ce{S}} = k_{\ce{S}} \left[\ce{[A^*][^*]} - \dfrac{\ce{[B^*][^*]}}{K_{\ce{S}}}\right]
Dual site (II) surface rxn AX+BXkXSkXSCX+DX\ce{A^* + B^* <=>[\mathit{k}_S][\mathit{k}_{-S}] C^* + D^*} rS=kS[[AX][BX][CX][DX]KS]r_{\ce{S}} = k_{\ce{S}} \left[\ce{[A^*][B^*]} - \dfrac{\ce{[C^*][D^*]}}{K_{\ce{S}}}\right]
Dual site (III) surface rxn AX+BXkXSkXSCX+DX\ce{A^* + B^{*}' <=>[\mathit{k}_S][\mathit{k}_{-S}] C^{*}' + D^*} rS=kS[[AX][BX][CX][DX]KS]r_{\ce{S}} = k_{\ce{S}} \left[\ce{[A^*][B^{*}']} - \dfrac{\ce{[C^{*}'][D^*]}}{K_{\ce{S}}}\right]
Eley-Rideal surface rxn AX+B(g)kXSkXSCX\ce{A^* + B (g) <=>[\mathit{k}_S][\mathit{k}_{-S}] C^{*}} rS=kS[[AX]PB[CX]KS]r_{\ce{S}} = k_{\ce{S}} \left[\ce{[A^*]} P_{\ce{B}} - \dfrac{\ce{[C^{*}]}}{K_{\ce{S}}}\right]