Contents

CHEM E 455 Surface and Colloid Science Laboratory

Fluid Interface and Capillarity

Surface tension

Description Equations
Surface tension $\sigma = \dfrac{dF}{dl}$

$T$ dependence of $\sigma$

Description Equations
Eotovs law $\sigma v^{2/3} = k_E (T_c - T)$
Guggenheim law $\sigma = \sigma^* \left(1 - \dfrac{T}{T_c}\right)^{11/9}$
Empirical linear equation
★ Modest T
$\sigma =a-bT \newline b = \dfrac{d\sigma}{dT} = -0.1 \ \mathrm{mM/m \cdot K}$

$\sigma$ and intermolecular forces

Description Equations
van der Waals attraction $\Phi_{\text{vdW}} = -\dfrac{B_{\text{vdW}}}{r^6}$
Born repulsion $\Phi_{\text{rep}} = \dfrac{B_{\text{rep}}}{r^{12}}$
Lennard-Jones potential $\Phi = 4\varepsilon \left[\left(\dfrac{\delta }{r}\right)^{12}-\left(\dfrac{\delta }{r}\right)^6\right]$
Lennard-Jones attractive force $F_{\text{attr}} = -\dfrac{24\varepsilon }{r}\left[2\left(\dfrac{\delta }{r}\right)^{12}-\left(\dfrac{\delta }{r}\right)^6\right]$
Bakker’s equation $\sigma = \displaystyle\int_{-\infty}^\infty (p - p_T) dz$

Components of $\sigma$

Description Equations
Components of surface tension $\sigma = \sigma^{\text{disperison}} + \sigma^{\text{dipole}} + \sigma^{\text{induced dipole}} + \sigma^{\text{H-bond}} + \sigma^{\text{metallic bond}} + \cdots$
Surface tension of liquid $\sigma = \sigma^{\text{disperison}} + \sigma^{\text{acid-base}}$
Surface tension of molten salt $\sigma = \sigma^{\text{disperison}} + \sigma^{\text{metallic bond}}$

Combining rules of $\sigma$

Description Equations
Antanov $\sigma_{AB} = \vert \sigma_{A(B)} - \sigma_{B(A)} \vert$
Girifalco & Good $\sigma_{AB} = \sigma_A + \sigma_B - 2\Phi \sqrt{\sigma_A \sigma_B}$
Fowkes $\sigma_{AB} = \sigma_A + \sigma_B - 2 \sqrt{\sigma_A^d \sigma_B^d}$

Young-Laplace equation

Curvature in 2D

Description Equations
Curvature of a plane curve $\kappa = \dfrac{d\phi}{dS}$
Curvature of a plane curve $\kappa = \pm y'' [1+(y')^2]^{-3/2}$
Curvature of a line $\kappa = 0$
Curvature of a circle $\kappa = \dfrac{1}{R}$

Curvature in 3D

Description Equations
Curvature of a surface $\kappa = \pm \left(\dfrac{1}{R_1}+\dfrac{1}{R_2}\right)=\pm \dfrac{2}{R_{\text{mean}}}$
Curvature of a surface $\kappa = \pm \dfrac{z_{xx}\left[1+\left(z_y\right)^2\right]-2z_xz_yz_{xy}+z_{yy}\left[1+\left(z_x\right)^2\right]}{\left[1+\left(z_x\right)^2+\left(z_y\right)^2\right]^{3/2}}$
Curvature of a sphere $\kappa = \dfrac{2}{R}$
Curvature of a circular cylinder $\kappa = \dfrac{1}{R}$
Curvature of a cylindrical surface $\kappa = \pm y'' [1+(y')^2]^{-3/2}$
Curvature of an axially symmetric surface $\kappa = $

Young-Laplace equation

Description Equations
Young-Laplace equation $\Delta p = p'' - p' = \sigma\kappa$