CHEM E 340 Transport Process II

Contents
Description Equations
Heat rate q=qA\mathbf{q} = \mathbf{q''}A
Fourier’s law (conduction) q=kT\mathbf{q''} = -k \nabla T
Fourier’s law (conduction) qx=kdTdxq_x'' = -k \dfrac{dT}{dx}
Description Equations
Newton’s law of cooling (convection) q=h(TsT)q'' = h (T_s - T_\infty)
Description Equations
Stefan-Boltzman’s law (radiation) Eb=εσTs4E_b = \varepsilon\sigma T_s^4
Gray body ε=α\varepsilon = \alpha
Blackbody ε=α=1\varepsilon = \alpha = 1
Irradiation from isothermal surrounding G=σTsurr4G = \sigma T_{\text{surr}}^4
Absorbed irradiation Gabs=αGG_{\text{abs}} = \alpha G
Net heat flux from radiation qrad=εσTs4αGq_{\text{rad}}'' = \varepsilon\sigma T_s^4 - \alpha G
Net heat flux from radiation
★ gray surface, isothermal surrounding TsurrT_{\text{surr}}
qrad=εσ(Ts4Tsurr4)q_{\text{rad}}'' = \varepsilon\sigma (T_s^4 - T_{\text{surr}}^4)
Net heat flux from radiation in rate law form qrad=hrad(TsTsurr)hrad=εσ(Ts+Tsurr)(Ts2+Tsurr2)q_{\text{rad}}'' = h_{\text{rad}} (T_s - T_{\text{surr}}) \newline h_{\text{rad}} = \varepsilon\sigma (T_s + T_{\text{surr}})(T_s^2 + T_{\text{surr}}^2)
Description Equations
Total energy balance In - Out + Generation = Accumulation\text{In - Out + Generation = Accumulation}
Total energy balance EinEout+Egen=ΔEaccE_{\text{in}} - E_{\text{out}} + E_{\text{gen}} = \Delta E_{\text{acc}}
Total energy balance E˙inE˙out+E˙gen=E˙acc=dEaccdt\dot{E}_{\text{in}} - \dot{E}_{\text{out}} + \dot{E}_{\text{gen}} = \dot{E}_{\text{acc}} = \dfrac{d E_{\text{acc}}}{dt}
Surface energy balance
E˙gen=E˙acc=0\dot{E}_{\text{gen}} = \dot{E}_{\text{acc}} = 0
E˙in=E˙out\dot{E}_{\text{in}} = \dot{E}_{\text{out}}
Description Equations
Heat Diffusion Equation 2T+q˙k=1αTt\nabla^2 T + \dfrac{\dot{q}}{k} = \dfrac{1}{\alpha}\dfrac{\partial T}{\partial t}
Heat Diffusion Equation q=q˙ρcPTt\nabla \cdot q'' = \dot{q} - \rho c_P\dfrac{\partial T}{\partial t}
Heat Diffusion Equation Tt=α2T+q˙ρcP\dfrac{\partial T}{\partial t} = \alpha\nabla^2 T + \dfrac{\dot{q}}{\rho c_P}
Volumetric heat generation q˙\dot{q}
Volumetric heat capacity (storage) ρcP\rho c_P
Thermal diffusivity α=kρcP\alpha = \dfrac{k}{\rho c_P}
Direction Heat flux Differential Area
x(,)x \in (-\infty, \infty) qx=kTxq_x'' = -k \frac{\partial T}{\partial x} dA=dydzdA = dydz
y(,)y \in (-\infty, \infty) qy=kTyq_y'' = -k \frac{\partial T}{\partial y} dA=dxdzdA = dxdz
z(,)z \in (-\infty, \infty) qz=kTzq_z'' = -k \frac{\partial T}{\partial z} dA=dxdydA = dxdy

x(kTx)+y(kTy)+z(kTz)+q˙=ρcPTt \dfrac{\partial}{\partial x} \left( k \dfrac{\partial T}{\partial x} \right) + \dfrac{\partial}{\partial y} \left( k \dfrac{\partial T}{\partial y} \right) + \dfrac{\partial}{\partial z} \left( k \dfrac{\partial T}{\partial z} \right) + \dot{q} = \rho c_P \dfrac{\partial T}{\partial t}

Direction Heat flux Differential Area
r[0,)r \in [0, \infty) qr=kTrq_r'' = -k \frac{\partial T}{\partial r} dA=r dϕdzdA = r \ d\phi dz
ϕ[0,2π]\phi \in [0, 2\pi] qϕ=k1rTϕq_\phi'' = -k \frac{1}{r}\frac{\partial T}{\partial \phi} dA=drdzdA = drdz
z[,)z \in [-\infty, \infty) qz=kTzq_z'' = -k \frac{\partial T}{\partial z} dA=r drdϕdA = r \ drd\phi

1rr(krTr)+1r2ϕ(kTϕ)+z(kTz)+q˙=ρcPTt \dfrac{1}{r}\dfrac{\partial}{\partial r} \left( k r\dfrac{\partial T}{\partial r} \right) + \dfrac{1}{r^2}\dfrac{\partial}{\partial \phi} \left( k \dfrac{\partial T}{\partial \phi} \right) + \dfrac{\partial}{\partial z} \left( k \dfrac{\partial T}{\partial z} \right) + \dot{q} = \rho c_P \dfrac{\partial T}{\partial t}

Direction Heat flux Differential Area
r[0,)r \in [0, \infty) qr=kTrq_r'' = -k \frac{\partial T}{\partial r} dA=r2sinθ dθdϕdA = r^2 \sin\theta \ d\theta d\phi
θ[0,2π]\theta \in [0, 2\pi] qθ=k1rTθq_\theta'' = -k \frac{1}{r}\frac{\partial T}{\partial \theta} dA=rsinθdrdϕdA = r\sin\theta drd\phi
ϕ[0,π]\phi \in [0, \pi] qϕ=k1rsinθTϕq_\phi'' = -k \frac{1}{r \sin\theta}\frac{\partial T}{\partial \phi} dA=r drdθdA = r \ drd\theta

1r2r(kr2Tr)+1r2sinθθ(ksinθTθ)+1r2sin2θϕ(kTϕ)+q˙=ρcPTt \dfrac{1}{r^2}\dfrac{\partial}{\partial r} \left( k r^2 \dfrac{\partial T}{\partial r} \right) + \dfrac{1}{r^2 \sin\theta}\dfrac{\partial}{\partial \theta} \left( k \sin\theta \dfrac{\partial T}{\partial \theta} \right) + \dfrac{1}{r^2 \sin^2\theta}\dfrac{\partial}{\partial \phi} \left( k \dfrac{\partial T}{\partial \phi} \right) + \dot{q} = \rho c_P \dfrac{\partial T}{\partial t}