Contents

CHEM E 340 Transport Process II

Modes of Heat Transfer

Conduction

Description Equations
Heat rate $\mathbf{q} = \mathbf{q''}A$
Fourier’s law (conduction) $\mathbf{q''} = -k \nabla T$
Fourier’s law (conduction) $q_x'' = -k \dfrac{dT}{dx}$

Convection

Description Equations
Newton’s law of cooling (convection) $q'' = h (T_s - T_\infty)$

Radiation

Description Equations
Stefan-Boltzman’s law (radiation) $E_b = \varepsilon\sigma T_s^4$
Gray body $\varepsilon = \alpha$
Blackbody $\varepsilon = \alpha = 1$
Irradiation from isothermal surrounding $G = \sigma T_{\text{surr}}^4$
Absorbed irradiation $G_{\text{abs}} = \alpha G$
Net heat flux from radiation $q_{\text{rad}}'' = \varepsilon\sigma T_s^4 - \alpha G$
Net heat flux from radiation
★ gray surface, isothermal surrounding $T_{\text{surr}}$
$q_{\text{rad}}'' = \varepsilon\sigma (T_s^4 - T_{\text{surr}}^4)$
Net heat flux from radiation in rate law form $q_{\text{rad}}'' = h_{\text{rad}} (T_s - T_{\text{surr}}) \newline h_{\text{rad}} = \varepsilon\sigma (T_s + T_{\text{surr}})(T_s^2 + T_{\text{surr}}^2)$

Energy balance

Description Equations
Total energy balance $\text{In - Out + Generation = Accumulation}$
Total energy balance $E_{\text{in}} - E_{\text{out}} + E_{\text{gen}} = \Delta E_{\text{acc}}$
Total energy balance $\dot{E}_{\text{in}} - \dot{E}_{\text{out}} + \dot{E}_{\text{gen}} = \dot{E}_{\text{acc}} = \dfrac{d E_{\text{acc}}}{dt}$
Surface energy balance
★ $\dot{E}_{\text{gen}} = \dot{E}_{\text{acc}} = 0$
$\dot{E}_{\text{in}} = \dot{E}_{\text{out}}$

Heat Diffusion Equation

Description Equations
Heat Diffusion Equation $\nabla^2 T + \dfrac{\dot{q}}{k} = \dfrac{1}{\alpha}\dfrac{\partial T}{\partial t}$
Heat Diffusion Equation $\nabla \cdot q'' = \dot{q} - \rho c_P\dfrac{\partial T}{\partial t}$
Heat Diffusion Equation $\dfrac{\partial T}{\partial t} = \alpha\nabla^2 T + \dfrac{\dot{q}}{\rho c_P}$
Volumetric heat generation $\dot{q}$
Volumetric heat capacity (storage) $\rho c_P$
Thermal diffusivity $\alpha = \dfrac{k}{\rho c_P}$

Cartesian coordinates

Direction Heat flux Differential Area
$x \in (-\infty, \infty)$ $q_x'' = -k \frac{\partial T}{\partial x}$ $dA = dydz$
$y \in (-\infty, \infty)$ $q_y'' = -k \frac{\partial T}{\partial y}$ $dA = dxdz$
$z \in (-\infty, \infty)$ $q_z'' = -k \frac{\partial T}{\partial z}$ $dA = dxdy$

$$ \dfrac{\partial}{\partial x} \left( k \dfrac{\partial T}{\partial x} \right) + \dfrac{\partial}{\partial y} \left( k \dfrac{\partial T}{\partial y} \right) + \dfrac{\partial}{\partial z} \left( k \dfrac{\partial T}{\partial z} \right) + \dot{q} = \rho c_P \dfrac{\partial T}{\partial t} $$

Cylindrical coordinates

Direction Heat flux Differential Area
$r \in [0, \infty)$ $q_r'' = -k \frac{\partial T}{\partial r}$ $dA = r \ d\phi dz$
$\phi \in [0, 2\pi]$ $q_\phi'' = -k \frac{1}{r}\frac{\partial T}{\partial \phi}$ $dA = drdz$
$z \in [-\infty, \infty)$ $q_z'' = -k \frac{\partial T}{\partial z}$ $dA = r \ drd\phi$

$$ \dfrac{1}{r}\dfrac{\partial}{\partial r} \left( k r\dfrac{\partial T}{\partial r} \right) + \dfrac{1}{r^2}\dfrac{\partial}{\partial \phi} \left( k \dfrac{\partial T}{\partial \phi} \right) + \dfrac{\partial}{\partial z} \left( k \dfrac{\partial T}{\partial z} \right) + \dot{q} = \rho c_P \dfrac{\partial T}{\partial t} $$

Spherical coordinates

Direction Heat flux Differential Area
$r \in [0, \infty)$ $q_r'' = -k \frac{\partial T}{\partial r}$ $dA = r^2 \sin\theta \ d\theta d\phi$
$\theta \in [0, 2\pi]$ $q_\theta'' = -k \frac{1}{r}\frac{\partial T}{\partial \theta}$ $dA = r\sin\theta drd\phi$
$\phi \in [0, \pi]$ $q_\phi'' = -k \frac{1}{r \sin\theta}\frac{\partial T}{\partial \phi}$ $dA = r \ drd\theta$

$$ \dfrac{1}{r^2}\dfrac{\partial}{\partial r} \left( k r^2 \dfrac{\partial T}{\partial r} \right) + \dfrac{1}{r^2 \sin\theta}\dfrac{\partial}{\partial \theta} \left( k \sin\theta \dfrac{\partial T}{\partial \theta} \right) + \dfrac{1}{r^2 \sin^2\theta}\dfrac{\partial}{\partial \phi} \left( k \dfrac{\partial T}{\partial \phi} \right) + \dot{q} = \rho c_P \dfrac{\partial T}{\partial t} $$