Contents

CHEM E 330 Transport Processes I

Contents
Description Equations
General form flux = -(coefficient)(driving force)
Fourier’s law
Heat conduction
q=kdTdyq = -k\dfrac{dT}{dy}
Fick’s law
Species diffusion
JA=DABdcadyJ_A^* = -D_{AB} \dfrac{dc_a}{dy}
Newton’s law of viscosity
Momentum transfer
τyx=μdvxdy\tau_{yx} = -\mu \dfrac{dv_x}{dy}
Description Equations
Fourier’s law qy=αdcHdyq_{y} = -\alpha \dfrac{dc_{H}}{dy}
Fick’s law JA=DABdcadyJ_A^* = -D_{AB} \dfrac{dc_a}{dy}
Newton’s law of viscosity τyx=νdcpxdy\tau_{yx} = -\nu \dfrac{dc_{p_x}}{dy}
Kinematic viscosity ν=μρ\nu = \dfrac{\mu}{\rho}
Thermal diffusivity α=kρcP^\alpha = \dfrac{k}{\rho \hat{c_P}}
Diffusivity of A in B DABD_{AB}
Prandtl number Pr=να=C^pμk\mathrm{Pr} = \dfrac{\nu}{\alpha} = \dfrac{\hat{C}_p \mu}{k}
Schmidt number Sc=νDAB=μρDAB\mathrm{Sc} = \dfrac{\nu}{D_{AB}} = \dfrac{\mu}{\rho D_{AB}}
Description Equations
Heat flow Q˙=Qt\dot{Q} = \dfrac{Q}{t}
Heat flux q=Q˙Aq = \dfrac{\dot{Q}}{A}
Description Equations
Mass (species) transport NA=xA(Ni)+JAN_A = x_A (\sum N_i) + J_A^*
Diffusion of A through a stagnant layer of B NA=cDAB1xAdxAdyN_A = -\dfrac{cD_{AB}}{1 - x_A}\dfrac{dx_A}{dy}
NA=cDABLln(1xAs)N_A = -\dfrac{cD_{AB}}{L}\ln(1-x_A^s)
Equimolar counter diffusion NA=cDABdxAdyN_A = -cD_{AB}\dfrac{dx_A}{dy}
Reaction at catalytic surface
A=2B    NB=2NA\ce{A = 2B} \implies N_B = 2N_A
NA=xANAcDABdxAdyN_A = -x_A N_A - cD_{AB}\dfrac{dx_A}{dy}
Description Equations
Interpretation of τyx\tau_{yx} 1. viscous shear stress exerted on a yy-plane in the +x+x-direction by the fluid of lesser yy on that of greater yy
2. flux of xx-momentum across a yy-plane in the +y+y-direction
Shear strain rate γ˙=dvxdy\dot{\gamma} = \dfrac{dv_x}{dy}
Hooke’s law
★ Hookean solid
τyx=Gdxdy=Gγ\tau_{yx} = -G \dfrac{dx}{dy} = -G \gamma
Newton’s law of viscosity
★ Newtonian fluid
τyx=μdvxdy=μγ˙\tau_{yx} = -\mu \dfrac{dv_x}{dy} = -\mu\dot{\gamma}
General Newton’s law of viscosity τyx=η(γ˙)γ˙\tau_{yx} = -\eta(\dot{\gamma})\dot{\gamma}
Viscosity function of power law fluid η=mγ˙n1\eta = m\dot{\gamma}^{n-1}
Newton’s law of viscosity
★ Power law fluid
τyx=mγ˙n\tau_{yx} = -m\dot{\gamma}^n
Carreau equation
★ Slurry
ηηηoη=[1+(λγ˙)2](n1)/2\dfrac{\eta - \eta_\infty}{\eta_o - \eta_\infty} = [1 + (\lambda\dot{\gamma})^2]^{(n-1)/2}
Description Equations
Average velocity uˉ=8kBTπm\bar{u} = \sqrt{\dfrac{8 k_B T}{\pi m}}
Mean free path λ=12πd2n\lambda = \dfrac{1}{\sqrt{2}\pi d^2 n}
Number density n=NVn = \dfrac{N}{V}
Molecular flux in the y-direction z=14nuˉz = \frac{1}{4}n\bar{u}
Average distance of molecules from ref plane when they initiate their jump aˉ=23λ\bar{a} = \frac{2}{3}\lambda
Viscosity of ideal gas μ=13ρuˉλ=23π3/2mkBTd2\mu = \dfrac{1}{3}\rho\bar{u}\lambda = \dfrac{2}{3\pi^{3/2}}\dfrac{\sqrt{mk_BT}}{d^2}
Thermal conductivity of ideal gas k=13ρcv^uˉλ=2cv^3π3/2mkBTd2k = \dfrac{1}{3}\rho\hat{c_v}\bar{u}\lambda = \dfrac{2\hat{c_v}}{3\pi^{3/2}}\dfrac{\sqrt{mk_BT}}{d^2}
Diffusivity of ideal gas A in B DAB=13uˉABλAB=2π3/2kBT3/mABdAB2PD_{AB} = \dfrac{1}{3}\bar{u}_{AB}\lambda_{AB} = \dfrac{2}{\pi^{3/2}}\dfrac{\sqrt{{k_BT}^3/m_{AB}}}{d^2_{AB} P}
Mean mass for diffusivity mAB=2mAmBmA+mBm_{AB} = \dfrac{2m_A m_B}{m_A+m_B}
Mean distance for diffusivity dAB=12(dA+dB)d_{AB} = \frac{1}{2}(d_A + d_B)
Prandtl number of monoatomic ideal gas Prmono=1\mathrm{Pr}_{\text{mono}} = 1
Schmidt number of general ideal gas Sc=1\mathrm{Sc} = 1

★ Moderate pressure

Description Equations
Lenard-Jones potential φ(r)=4ε[(σr)12(σr)6]\varphi(r) = 4\varepsilon \left[\left(\dfrac{\sigma}{r}\right)^{12} - \left(\dfrac{\sigma}{r}\right)^6\right]
Attractive force Fattr=24εr[(σr)62(σr)12]F_{\text{attr}} = \dfrac{24\varepsilon}{r} \left[\left(\dfrac{\sigma}{r}\right)^{6} - 2\left(\dfrac{\sigma}{r}\right)^{12}\right]
Viscosity of real gas (analytic) μ=516ππmkBTσ2Ωμ\mu = \dfrac{5}{16\pi}\dfrac{\sqrt{\pi m k_BT}}{\sigma^2 \Omega_\mu}
Thermal conductivity of real gas (analytic) k=2532ππmkBTσ2Ωkcv^=52cv^μk = \dfrac{25}{32\pi} \dfrac{\sqrt{\pi m k_BT}}{\sigma^2 \Omega_k}\hat{c_v} = \dfrac{5}{2}\hat{c_v}\mu
Viscosity of real gas μ(gcms)=2.6692×105MTσ2Ωμ\mu\left(\mathrm{\frac{g}{cm \cdot s}}\right) = 2.6692 \times 10^{-5} \dfrac{\sqrt{\mathcal{M}T}}{\sigma^2 \Omega_\mu}
Thermal conductivity of monoatomic real gas kmono(calcmsK)=1.989×104T/Mσ2Ωkk_{\text{mono}}\left(\mathrm{\frac{cal}{cm \cdot s \cdot K}}\right) = 1.989 \times 10^{-4} \dfrac{\sqrt{T / \mathcal{M}}}{\sigma^2 \Omega_k}
Thermal conductivity of polyatomic real gas
Euken factor
kpoly(calcmsK)=[cp^+54RM]μk_{\text{poly}}\left(\mathrm{\frac{cal}{cm \cdot s \cdot K}}\right) = \left[ \hat{c_p} + \dfrac{5}{4}\dfrac{R}{\mathcal{M}} \right] \mu
Diffusivity of real gas
T[=]KP[=]atmσAB[=]T [=] \mathrm{K} \newline P [=] \mathrm{atm} \newline \sigma_{AB} [=] Å
DAB(cm2s)=2.63×103T3/MABPσAB2ΩDD_{AB}\left(\mathrm{\frac{cm^2}{s}}\right) = 2.63 \times 10^{-3} \dfrac{\sqrt{T^3 / \mathcal{M}_{AB}}}{P\sigma^2_{AB}\Omega_D}
Mean molar mass for diffusivity MAB=2MAMBMA+MB\mathcal{M}_{AB} = \dfrac{2\mathcal{M}_A \mathcal{M}_B}{\mathcal{M}_A + \mathcal{M}_B}
Mean distance for diffusivity ωAB=12(ωA+ωB)\omega_{AB} = \frac{1}{2}(\omega_A + \omega_B)
Viscosity at different temperatures μ(T2)=μ(T1)T2T1Ωμ1Ωμ2\mu(T_2) = \mu(T_1)\sqrt{\dfrac{T_2}{T_1}}\dfrac{\Omega_{\mu_1}}{\Omega_{\mu_2}}
Diffusivity at different temperatures DAB(T2)=DAB(T1)(T2T1)3/2ΩD1ΩD2D_{AB}(T_2) = D_{AB}(T_1)\left(\dfrac{T_2}{T_1}\right)^{3/2}\dfrac{\Omega_{D_1}}{\Omega_{D_2}}
TT and PP dependence of transport coefficients of gases at moderate pressure μTkmonoTkpoly=f(T,cp^(T))DABT3/2P1DAB=DBA\begin{aligned}\mu &\propto\sqrt{T} \\ k_{\text{mono}} &\propto\sqrt{T} \\ k_{\text{poly}} &= f(T, \hat{c_p}(T)) \\ D_{AB} &\propto T^{3/2}P^{-1} \\ D_{AB} &= D_{BA}\end{aligned}
Description Equations
Wilke equation
Viscosity of gas mixture
μmix=i=1Nxiμij=1NxjΦij\mu_{\text{mix}} = \displaystyle\sum_{i=1}^{N}\dfrac{x_i \mu_i}{\sum_{j=1}^N x_j \Phi_{ij}}
Wilke equation
Thermal conductivity of gas mixture
kmix=i=1Nxikij=1NxjΦijk_{\text{mix}} = \displaystyle\sum_{i=1}^{N}\dfrac{x_i k_i}{\sum_{j=1}^N x_j \Phi_{ij}}
Wilke equation parameter Φij=18[1+MiMj]1/2[1+[μiμj]1/2+[MiMj]1/4]2\Phi_{ij} = \frac{1}{\sqrt{8}} \left[ 1 + \frac{\mathcal{M}_i}{\mathcal{M}_j} \right]^{-1/2} \left[ 1 + \left[\frac{\mu_i}{\mu_j}\right]^{1/2} + \left[\frac{\mathcal{M}_i}{\mathcal{M}_j}\right]^{-1/4} \right]^2
Blanc’s equation
Diffusivity of gas mixture
Di,mix=[j1NxjDij]1D_{i, \text{mix}} = \left[ \displaystyle\sum_{j \not= 1}^{N} \dfrac{x_j}{D_{ij}} \right]^{-1}
Description Equations
Eyring model
Viscosity of liquid
μ=NAhV~exp[0.408ΔUvapRT]\mu = \dfrac{N_A h}{\tilde{V}}\exp\left[ 0.408 \dfrac{\Delta U_{\text{vap}}}{RT} \right]
Bridgeman equation
Thermal conductivity of liquid
k=2.8(NAV~2/3kBvs)k = 2.8 \left( \dfrac{N_A}{\tilde{V}}^{2/3} k_B v_s \right)
Einstein equation DABkBTfD_{AB} \approx \dfrac{k_BT}{f}
Hydrodynamic friction factor f={6πμBRAno slip4πμBRAfree slipf = \begin{cases} 6\pi\mu_BR_A & \text{no slip} \\ 4\pi\mu_BR_A & \text{free slip} \end{cases}
Stoke-Einstein Equation
Diffusivity of dilute liquid A
DAB=kBT4πμBRAD_{AB} = \dfrac{k_BT}{4\pi\mu_BR_A}
Wilke-Chang correlation
Diffusivity of dilute liquid A
V~[=]cm3/molμB[=]cPT[=]K\tilde{V} [=] \mathrm{cm^3/mol} \newline \mu_B [=] \mathrm{cP} \newline T [=] \mathrm{K}
DAB(cm2s)=7.4×108(ψBMB)1/2TμV~A0.6D_{AB}\left(\mathrm{\frac{cm^2}{s}}\right) = 7.4 \times 10^{-8} \dfrac{(\psi_B \mathcal{M}_B)^{1/2} T}{\mu \tilde{V}_A^{0.6}}
Vigne’s equation
Diffusivity of liquid mixture
DAB=(DAB0)xB(DBA0)xAD_{AB} = (D_{AB}^0)^{x_B} (D_{BA}^0)^{x_A}
TT dependence of transport coefficients of liquids
(no PP dependence)
μ=AeB/TDABμBTDABDBA\begin{aligned} \mu &= Ae^{B/T} \\ D_{AB}\mu_B &\propto T \\ D_{AB} &\not= D_{BA} \end{aligned}
Description Equations
Rectilinear shell volume ΔV=LWΔy\Delta V = LW\Delta y
Cylindrical shell volume ΔV=2πrLΔr\Delta V = 2\pi r L \Delta r
Spherical shell volume ΔV=4πr2Δr\Delta V = 4 \pi r^2 \Delta r
Newton’s law of cooling q=h(TsolidTfluid)q = h(T_{\text{solid}} - T_{\text{fluid}})
Relationship between NAN_A and cAc_A at boundary NA=km(cA,solidcA,fluid)N_A = k_m (c_{A, \text{solid}} - c_{A, \text{fluid}})
Reynolds number Re=Lcharvcharρμ\mathrm{Re} = \dfrac{L_{\text{char}}v_{\text{char}}\rho}{\mu}
No slip condition v1=v2v_1 = v_2
Free slip condition μ1(dvxdy)1=0-\mu_1\left(\dfrac{dv_x}{dy}\right)_1 = 0
Continuity of stress τy,1=τy,2μ1(dvxdy)1=μ2(dvxdy)2\begin{aligned}\tau_{y, 1} &= \tau_{y, 2} \\ -\mu_1\left(\dfrac{dv_x}{dy}\right)_1 &= -\mu_2\left(\dfrac{dv_x}{dy}\right)_2 \end{aligned}
  1. Sketch the system with coordinate system
  2. Sketch the shell that is thin in the direction of transport (change)
  3. Write shell volume ΔV\Delta V
  4. Write shell balance OIGA of transported quantity
    • outin=generationaccumulation\mathrm{out - in = generation - accumulation}
  5. Take limit as shell thickness approach 0
    • Differential equation of flux distribution
  6. Separate variable and integrate
    • Flux distribution, c1c_1
  7. Substitute rate law
  8. Separate variable and integrate
    • Profile, c1,c2c_1, c_2
  9. Evaluate c1,c2c_1, c_2 using boundary conditions
  • Rectilinear coordinates
  • No generation
  • No driving force
  • Steady state
Description Equations
Differential equation of flux distribution dqdy=0\dfrac{dq}{dy} = 0
Temperature profile (linear) T(y)=T1qkyT(y) = T_1 - \dfrac{q}{k} y
Flux distribution (inverse) q(y)=k(T1T)yq(y) = \dfrac{k(T_1 - T)}{y}
Flux across the whole layer q=k(T1T2)Hq = \dfrac{k(T_1 - T_2)}{H}
  • Cylindrical coordinates
  • No generation
  • No driving force
  • Steady state
Description Equations
Differential equation of flux distribution d(rq)dr=0\dfrac{d(rq)}{dr} = 0
Flux distribution (inverse) q(r)=k(TiT0)rln(R0Ri)q(r) = \dfrac{k(T_i - T_0)}{r \ln(\frac{R_0}{R_i})}
Temperature profile (logarithmic) T(r)=TiTiT0ln(R0Ri)ln(rRi)T(r) = T_i - \dfrac{T_i - T_0}{\ln(\frac{R_0}{R_i})} \ln\left(\dfrac{r}{R_i}\right)
  • Spherical coordinates
  • No generation
  • No driving force
  • Steady state
Description Equations
Differential equation of flux distribution d(r2q)dr=0\dfrac{d(r^2 q)}{dr} = 0
Flux distribution (inverse squared) q(r)=k(TiT0)r2(1Ri1R0)q(r) = \dfrac{k(T_i - T_0)}{r^2 (\frac{1}{R_i} - \frac{1}{R_0})}
Temperature profile (inverse) T(r)=TiTiT0(1Ri1R0)(1r1Ri)T(r) = T_i - \dfrac{T_i - T_0}{(\frac{1}{R_i} - \frac{1}{R_0})} \left(\dfrac{1}{r} - \dfrac{1}{R_i}\right)
  • Rectilinear coordinates
  • With generation
  • No driving force
  • Steady state
Description Equations
Differential equation of flux distribution dqdy=S\dfrac{dq}{dy} = S
Flux distribution (linear) q(y)=Sy+kH(T2T1)SH2q(y) = Sy + \dfrac{k}{H}(T_2 - T_1) - \dfrac{SH}{2}
Temperature profile (quadratic) T(y)=T1S2ky2+[SH2kT2T1H]yT(y) = T_1 - \dfrac{S}{2k} y^2 + \left[ \dfrac{SH}{2k} - \dfrac{T_2 - T_1}{H} \right] y
  • Rectilinear coordinates
  • Gravity driving force, but no pressure gradient
  • Steady state
Description Equations
Differential equation of flux distribution dτyxdy=ρgcosβ\dfrac{d\tau_{yx}}{dy} = \rho g \cos\beta
Flux distribution (linear) τyx(y)=ρgcosβ(δy)\tau_{yx}(y) = -\rho g \cos\beta (\delta - y)
Velocity profile (quadratic) vx(y)=gcosβ2ν(2δyy2)v_x(y) = \dfrac{g \cos\beta}{2\nu}(2\delta y - y^2)
★ No entry length effect LδL \gg \delta
★ No edge effect WδW \gg \delta
★ Incompressible Newtonian fluid Δμ=0,Δρ=0\Delta\mu = 0, \Delta\rho = 0
★ No end effect, no ripple Rerippling20\mathrm{Re}_{\text{rippling}} \lesssim 20
Reynolds number for falling film Re=4δvxρμ\mathrm{Re} = \dfrac{4\delta \langle v_x \rangle\rho}{\mu}
Description Equations
Skin friction τ0=ρgcos(β)δ\tau^0 = \rho g \cos(\beta)\delta
Free surface velocity vxsurf=gcosβ2νδ2v_x^{\text{surf}} = \dfrac{g \cos\beta}{2\nu}\delta^2
Volumetric flow rate Q=v dAQ = \int v_\perp \ dA
Volumetric flow rate per unit area QW=gcos(β)δ33ν\dfrac{Q}{W} = \dfrac{g \cos(\beta) \delta^3}{3\nu}
Average velocity vx=gcos(β)δ23ν\langle v_x \rangle = \dfrac{g\cos(\beta)\delta^2}{3\nu}
Mass flow rate m˙=ρQ\dot{m} = \rho Q
Mass flow rate per unit width Γ=ρQW=ρgcos(β)δ33ν\Gamma = \dfrac{\rho Q}{W} = \dfrac{\rho g \cos(\beta) \delta^3}{3\nu}
Film thickness given Γ\Gamma δ=3νΓρgcosβ3\delta = \sqrt[3]{\dfrac{3\nu \Gamma}{\rho g \cos\beta}}
  • Cylindrical coordinates
  • Pressure-gravity driving force
  • Steady state
  • No tube bents, constant cross section
  • Negligible P dependence with r
Description Equations
Modified pressure P=P+ρgh\mathcal{P} = P + \rho gh
Pressure-gravity driving force dPdz+ρgcosβ=P1P2L-\dfrac{dP}{dz} + \rho g \cos\beta = \dfrac{\mathcal{P}_1 - \mathcal{P}_2}{L}
Differential equation of flux distribution d(rτrz)dr=(P1P2L)r\dfrac{d (r\tau_{rz})}{dr} = \left( \dfrac{\mathcal{P}_1 - \mathcal{P}_2}{L} \right) r
Flux distribution (linear) τrz(r)=12(P1P2L)r\tau_{rz}(r) = \dfrac{1}{2} \left( \dfrac{\mathcal{P}_1 - \mathcal{P}_2}{L} \right) r
Velocity profile (quadratic) vz(r)=R24μ(P1P2L)[1(rR)2]v_z(r) = \dfrac{R^2}{4\mu} \left( \dfrac{\mathcal{P}_1 - \mathcal{P}_2}{L} \right) \left[ 1 - \left( \dfrac{r}{R} \right)^2 \right]
★ Incompressible Newtonian fluid Δμ=0,Δρ=0\Delta\mu = 0, \Delta\rho = 0
★ Laminar flow Relaminar2100\mathrm{Re}_{\text{laminar}} \le 2100
★ Fully developed flow (no entry length effect) Le0.035DReL_e \approxeq 0.035 D \mathrm{Re}
Reynolds number for pipe flow Repipe=Dvzρμ\mathrm{Re}_{\text{pipe}} = \dfrac{D \langle v_z \rangle\rho}{\mu}
Description Equations
Skin friction τrz0=12(P1P2L)R\tau_{rz}^0 = \dfrac{1}{2} \left( \dfrac{\mathcal{P}_1 - \mathcal{P}_2}{L} \right) R
Volumetric flow Q=R4π8μ(P1P2L)Q = \dfrac{R^4 \pi}{8 \mu} \left( \dfrac{\mathcal{P}_1 - \mathcal{P}_2}{L} \right)
Average velocity vz=R28μ(P1P2L)\langle v_z \rangle = \dfrac{R^2}{8\mu} \left( \dfrac{\mathcal{P}_1 - \mathcal{P}_2}{L} \right)
Mass flow rate m˙=R4πρ8μ(P1P2L)\dot{m} = \dfrac{R^4 \pi\rho}{8\mu} \left( \dfrac{\mathcal{P}_1 - \mathcal{P}_2}{L} \right)
Description Equations
Darcy’s law - average velocity
κ\kappa - bed permeability
v=κμL(P1P2)\langle v \rangle = \dfrac{\kappa}{\mu L}(\mathcal{P}_1 - \mathcal{P}_2)
Darcy’s law - volumetric flow rate
AA - empty bed cross section
ε\varepsilon - porosity, void fraction
Q=κAεμL(P1P2)Q = \dfrac{\kappa A \varepsilon}{\mu L}(\mathcal{P}_1 - \mathcal{P}_2)
Blake-Kozeny model
Bed permeability
κ=Dp2150(ε1ε)2\kappa = \dfrac{D_p^2}{150} \left( \dfrac{\varepsilon}{1 - \varepsilon} \right)^2
Effective packing particle diameter Dp=6av=6VADp,spheres=DD_p = \dfrac{6}{a_v} = \dfrac{6 V}{A} \newline D_{p, \text{spheres}} = D
Bed Reynolds number Rebed=DpQρμA(1ε)\mathrm{Re}_{\text{bed}} = \dfrac{D_p Q \rho}{\mu A (1-\varepsilon)}
★ Laminar flow Relaminar<10\mathrm{Re}_{\text{laminar}} < 10
Description Equations
Equation of hydrostatic P1P2=ρg(h2h1)P_1 - P_2 = \rho g(h_2 - h_1)
Manometer equation P1P2=(ρmρ)gH+ρg(h2h1)P_1 - P_2 = (\rho_m - \rho) gH + \rho g(h_2 - h_1)
Manometer equation P1P2=(ρmρ)gH\mathcal{P}_1 - \mathcal{P}_2 = (\rho_m - \rho) gH
Description Equations
Unsteady state conduction in rectilinear system (Tt)y=α2Ty2+Sρcp^\left(\dfrac{\partial T}{\partial t}\right)_y = \alpha \dfrac{\partial^2 T}{\partial y^2} + \dfrac{S}{\rho \hat{c_p}}
Unsteady state diffusion in rectilinear system (cAt)y=DAB2cAy2+RA\left(\dfrac{\partial c_A}{\partial t}\right)_y = D_{AB} \dfrac{\partial^2 c_A}{\partial y^2} + R_A
Unsteady state Couette flow (1D rectilinear shear flow) (vxt)y=ν(2vxy2)t\left(\dfrac{\partial v_x}{\partial t}\right)_y = \nu \left(\dfrac{\partial^2 v_x}{\partial y^2}\right)_t
Unsteady state flow in cylindrical system (vzt)r=ν[2vzr2+1rvzr]+1ρ[P1P2L]\left(\dfrac{\partial v_z}{\partial t}\right)_r = \nu \left[ \dfrac{\partial^2 v_z}{\partial r^2} + \dfrac{1}{r} \dfrac{\partial v_z}{\partial r} \right] + \dfrac{1}{\rho} \left[\dfrac{\mathcal{P}_1 - \mathcal{P}_2}{L}\right]
Description Equations
Fourier’s law in 3D q~=kT\utilde{q} = -k \nabla T
Fick’s law in 3D J~A=DABcA\utilde{J}_A^* = -D_{AB} \nabla c_A
Newton’s law of viscosity in 3D τ=μ(Δ+Δ)\underset{\approx}{\tau} = -\mu (\underset{\approx}{\Delta} + \underset{\approx}{\Delta}^{\dagger})
Viscous stress tensor τ=[τxxτxyτxzτyxτyyτyzτzxτzyτzz]\underset{\approx}{\tau} = \begin{bmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \end{bmatrix}
Rate of strain tensor Δ=[vxxvxyvxzvyxvyyvyzvzxvzyvzz]\underset{\approx}{\Delta} = \begin{bmatrix} \dfrac{\partial v_x}{\partial x} & \dfrac{\partial v_x}{\partial y} & \dfrac{\partial v_x}{\partial z} \\ \\ \dfrac{\partial v_y}{\partial x} & \dfrac{\partial v_y}{\partial y} & \dfrac{\partial v_y}{\partial z} \\ \\ \dfrac{\partial v_z}{\partial x} & \dfrac{\partial v_z}{\partial y} & \dfrac{\partial v_z}{\partial z} \end{bmatrix}
Description Equations
Conservation of thermal energy q~=Sρcp^Tt\nabla\cdot\utilde{q} = S - \rho \hat{c_p} \dfrac{\partial T}{\partial t}
Conduction equation
★ No convection
Tt=α2T+Sρcp^\dfrac{\partial T}{\partial t} = \alpha \nabla^2 T + \dfrac{S}{\rho \hat{c_p}}
Molecular diffusion equation
★ No convection
cAt=DAB2cA+RA\dfrac{\partial c_A}{\partial t} = D_{AB} \nabla^2 c_A + R_A
Description Equations
Continuity equation ρt+(ρv~)=0\dfrac{\partial \rho}{\partial t} + \nabla\cdot(\rho\utilde{v}) = 0
Continuity equation of incompressible liquid
★ Constant ρ\rho
v~=0\nabla\cdot\utilde{v} = 0
Equation of motion (vv-form) ρDv~Dt=p+μ2v~+ρg\rho\dfrac{D\utilde{v}}{Dt} = -\nabla p + \mu\nabla^2\utilde{v} + \rho g
Equation of motion (τ\tau-form) ρDv~Dt=pτ+ρg\rho\dfrac{D\utilde{v}}{Dt} = -\nabla p - \nabla\cdot\underset{\approx}{\tau} + \rho g
Equation of motion (xx-component) ρ[vxt+v~vx]=px[τxxx+τyxy+τzxz]+ρgx\begin{aligned} &\rho \left[ \dfrac{\partial v_x}{\partial t} + \utilde{v}\cdot\nabla v_x \right] \\ =& -\dfrac{\partial p}{\partial x} - \left[ \dfrac{\partial \tau_{xx}}{\partial x} + \dfrac{\partial \tau_{yx}}{\partial y} + \dfrac{\partial \tau_{zx}}{\partial z} \right] + \rho g_x \end{aligned}
Description Equations
Gradient operator \nabla Operates on scalar to give a vector, whose magnitude is the maximum rate of change of the scalar with position, and whose direction points in the direction of that change
Divergence operator ()(\nabla\cdot) Operates on a vector to give a scalar
Divergence of a flux vector (f~)(\nabla\cdot\utilde{f}) Rate of efflux (outflow) of the transported quantity per unit volume
Laplacian operator 2=\nabla^2 = \nabla\cdot\nabla
Substantial derivative operator DDt=t+v~\dfrac{D}{Dt} = \dfrac{\partial}{\partial t} + \utilde{v}\cdot\nabla
Description Equations
Thermal energy equation DTDt=α2T+Sρcp^\dfrac{DT}{Dt} = \alpha \nabla^2 T + \dfrac{S}{\rho \hat{c_p}}
Convective diffusion equation DcADt=DAB2cA+RA\dfrac{D c_A}{Dt} = D_{AB} \nabla^2 c_A + R_A
Description Equations
Mach number Ma=vcharvsound\mathrm{Ma} = \dfrac{v_{\text{char}}}{v_{\text{sound}}}
Conduit flow m˙1=m˙2ρ1Q1=ρ2Q2\begin{aligned} \dot{m}_1 &= \dot{m}_2 \\ \rho_1 Q_1 &= \rho_2 Q_2 \end{aligned}
Incompressible conduit flow
★ Constant ρ\rho
Q1=Q2A1v1=A2v2\begin{aligned} Q_1 &= Q_2 \\ A_1 \langle v \rangle_1 &= A_2 \langle v \rangle_2 \end{aligned}
Assumptions Equations
Rectilinear coordinates f(x,y,z)f(x, y, z)
Constant ρ,μ\rho, \mu ρt=0,μt=0\frac{\partial \rho}{\partial t} = 0, \frac{\partial \mu}{\partial t} = 0
Laminar flow Re<Recr\mathrm{Re} < \mathrm{Re}_{\text{cr}}
Steady state t=0\frac{\partial}{\partial t} = 0
vxv_x component only vy=vz=0v_y = v_z = 0
No edge effect z=0\frac{\partial}{\partial z} = 0
No end effect vxx=0\frac{\partial v_x}{\partial x} = 0
No hydrostatic pressure diff between plates bW,L    py+ρgy=0b \ll W, L \implies -\frac{\partial p}{\partial y} + \rho g_y = 0
Description Equations
xx-momentum equation P0PLL+μ2vxy2=0\dfrac{\mathcal{P}_0 - \mathcal{P}_L}{L} + \mu\dfrac{\partial^2 v_x}{\partial y^2} = 0
Velocity profile (quadratic) vx(y)=12μ(P0PLL)(y2+by)v_x(y) = \dfrac{1}{2\mu}\left( \dfrac{\mathcal{P}_0 - \mathcal{P}_L}{L} \right)(-y^2 + by)
Average velocity vx=b212μ(P0PLL)\langle v_x \rangle = \dfrac{b^2}{12\mu}\left( \dfrac{\mathcal{P}_0 - \mathcal{P}_L}{L} \right)
Skin friction at bottom plate τ0=b2(P0PLL)\tau^0 = \dfrac{b}{2} \left( \dfrac{\mathcal{P}_0 - \mathcal{P}_L}{L} \right)
Assumptions Equations
Cylindrical coordinates f(r,θ,z)f(r, \theta, z)
Constant ρ,μ\rho, \mu ρt=0,μt=0\frac{\partial \rho}{\partial t} = 0, \frac{\partial \mu}{\partial t} = 0
Laminar flow Re<Recr\mathrm{Re} < \mathrm{Re}_{\text{cr}}
Steady state t=0\frac{\partial}{\partial t} = 0
vθv_\theta component only vr=vz=0v_r = v_z = 0
Axial symmetry θ=0\frac{\partial}{\partial \theta} = 0
No end effect vθz=0\frac{\partial v_\theta}{\partial z} = 0
Vertical orientation gz=g,gθ=gr=0g_z = -g, g_\theta = g_r = 0
Description Equations
rr-momentum equation ρvθ2r=pr-\rho\dfrac{v_\theta^2}{r} = -\dfrac{\partial p}{\partial r}
θ\theta-momentum equation μr(1rr(rvθ))=0\mu\dfrac{\partial}{\partial r} \left( \dfrac{1}{r}\dfrac{\partial}{\partial r} (rv_\theta) \right) = 0
zz-momentum equation pzρg=0-\dfrac{\partial p}{\partial z} - \rho g = 0
Velocity profile (general form) vθ(r)=c1r2+c2rv_\theta(r) = c_1\dfrac{r}{2} + \dfrac{c_2}{r}
Velocity profile vθ(r)=Ω01κ2[r(κR)2r]v_\theta(r) = \dfrac{\Omega_0}{1 - \kappa^2}\left[r - \dfrac{(\kappa R)^2}{r}\right]
Pressure profile PPκR=12ρ(Ω0κR1κ2)2[(rκR)2(κRr)24ln(rκR)]P - P_{\kappa R} = \dfrac{1}{2}\rho \left(\dfrac{\Omega_0\kappa R}{1-\kappa^2}\right)^2 \left[\left(\dfrac{r}{\kappa R}\right)^2 - \left(\dfrac{\kappa R}{r}\right)^2 - 4\ln\left(\dfrac{r}{\kappa R}\right) \right]
Shear stress distribution τrθ=2μκ2(Ω01κ2)(Rr)2\tau_{r\theta} = -2\mu\kappa^2\left(\dfrac{\Omega_0}{1-\kappa^2}\right)\left(\dfrac{R}{r}\right)^2
Torque T=4πμLΩ0R2κ21κ2\mathcal{T} = 4\pi\mu L \Omega_0 R^2\dfrac{\kappa^2}{1 - \kappa^2}
Couette viscometer μ=T4πLΩ0R21κ2κ2\mu = \dfrac{\mathcal{T}}{4\pi L \Omega_0 R^2}\dfrac{1 - \kappa^2}{\kappa^2}
Assumptions Equations
Spherical coordinates f(r,θ,ϕ)f(r, \theta, \phi)
Constant ρ,μ\rho, \mu ρt=0,μt=0\frac{\partial \rho}{\partial t} = 0, \frac{\partial \mu}{\partial t} = 0
Laminar flow Re<Recr\mathrm{Re} < \mathrm{Re}_{\text{cr}}
Steady state t=0\frac{\partial}{\partial t} = 0
Axial symmetry ϕ=0\frac{\partial}{\partial \phi} = 0
No spinning vϕ=0v_\phi = 0
Vertical orientation gr=gcosθ,gθ=gsinθ,gϕ=0g_r = -g \cos\theta, g_\theta = g \sin\theta, g_\phi = 0
vθv_\theta component only vr=vz=0v_r = v_z = 0
Description Equations
rr velocity profile vr=v[132(Rr)+12(Rr)2]cosθv_r = v_\infty \left[ 1 - \dfrac{3}{2}\left(\dfrac{R}{r}\right) + \dfrac{1}{2}\left(\dfrac{R}{r}\right)^2 \right] \cos\theta
θ\theta velocity profile vθ=v[134(Rr)14(Rr)3]sinθv_\theta = -v_\infty \left[ 1 - \dfrac{3}{4}\left(\dfrac{R}{r}\right) - \dfrac{1}{4}\left(\dfrac{R}{r}\right)^3 \right] \sin\theta
Pressure profile p=p0ρgz32μvR(Rr)2cosθp = p_0 - \rho gz - \dfrac{3}{2}\dfrac{\mu v_\infty}{R}\left(\dfrac{R}{r}\right)^2 \cos\theta
Viscous drag 4πμvR4\pi\mu v_\infty R
Pressure force (buoyancy + form frag) 43πR3ρg+2πRμv\frac{4}{3}\pi R^3 \rho g + 2\pi R \mu v_\infty
Stoke’s law v=2R2(ρsρ)g9μv_\infty = \dfrac{2R^2 (\rho_s - \rho)g}{9\mu}
Falling ball viscometer μ=2R2(ρsρ)g9v\mu = \dfrac{2R^2 (\rho_s - \rho)g}{9 v_\infty}
Description Equations
Terminal velocity v=2R2(ρsρ)ω2r9μv_\infty = \dfrac{2R^2 (\rho_s - \rho) \omega ^2r}{9\mu}
Centrifuge viscometer μ=2R2(ρsρ)ω29ln(R2R1)Δt\mu = \dfrac{2R^2 (\rho_s - \rho)\omega^2}{9 \ln\left(\frac{R_2}{R_1}\right)} \Delta t
Geometry Reynolds Number Critical Reynolds Number
Circular tube flow Re=Dvρμ\mathrm{Re} = \dfrac{D \langle v \rangle \rho}{\mu} Rec2100\mathrm{Re_c} \approx 2100
Falling film Re=4δvρμ\mathrm{Re} = \dfrac{4 \delta \langle v \rangle \rho}{\mu} Rec1500\mathrm{Re_c} \approx 1500
Flow between parallel plates Re=2bvρμ\mathrm{Re} = \dfrac{2b \langle v \rangle \rho}{\mu} Rec1780\mathrm{Re_c} \approx 1780
Tangential flow in an annulus (Couette flow between rotating cylinders) Re=Ω0R2vρμ\mathrm{Re} = \dfrac{\Omega_0 R^2 \langle v \rangle \rho}{\mu} Rec50000\mathrm{Re_c} \approx 50000
Property Laminar Flow (Re<2100)(\mathrm{Re} < 2100) Turbulent Flow (Re[104,105])(\mathrm{Re} \in [10^4, 10^5])
Velocity profile vzvz,max=1(rR)2\dfrac{v_z}{v_{z, \max}} = 1 - \left(\dfrac{r}{R}\right)^2 vzvz,max(1rR)1/7\dfrac{v_z}{v_{z, \max}} \approx \left(1 - \dfrac{r}{R}\right)^{1/7}
Average velocity vz=12vz,max\langle v_z \rangle = \frac{1}{2}v_{z, \max} vz45vˉz,max\langle v_z \rangle \approx \frac{4}{5}\bar{v}_{z, \max}
Volumetric flow rate Q=πR48μ(P0P1L)Q = \dfrac{\pi R^4}{8\mu} \left(\dfrac{\mathcal{P}_0 - \mathcal{P}_1}{L}\right) Q(P0P1L)4/7Q \propto \left(\dfrac{\mathcal{P}_0 - \mathcal{P}_1}{L}\right)^{4/7}
Entry length Le=0.035DReL_e = 0.035 D \mathrm{Re} Le40DL_e \approx 40D
Derivation From theory From experiment
Description Equations
Velocity decomposition vz=vˉz+vzv_z = \bar{v}_z + v_z'
Velocity profile in turbulent flow vˉz=vˉz,max(1rR)1/n\bar{v}_z = \bar{v}_{z, \max}\left(1 - \dfrac{r}{R}\right)^{1/n}
n={6Re[2×103,104]7Re[104,105]8Re[105,106]n = \begin{cases} 6 & \mathrm{Re} \in [2\times 10^3, 10^4] \\ 7 & \mathrm{Re} \in [10^4, 10^5] \\ 8 & \mathrm{Re} \in [10^5, 10^6] \end{cases}
Description Equations
Time-smoothed continuity equation vˉ~=0v~=0\nabla\cdot\utilde{\bar{v}} = 0 \newline \nabla\cdot\utilde{v}' = 0
Time-smoothed equation of motion (τ\tau-form) ρDvˉ~Dt=pˉτˉtotal+ρg\rho\dfrac{D\utilde{\bar{v}}}{Dt} = -\nabla \bar{p} - \nabla\cdot\underset{\approx}{\bar{\tau}}^{\text{total}} + \rho g
Time-smoothed equation of motion (xx-component) ρ[vˉxt+vˉ~vˉx]=pˉx[τˉxxtotalx+τˉyxtotaly+τˉzxtotalz]+ρgx\begin{aligned} &\rho \left[ \dfrac{\partial \bar{v}_x}{\partial t} + \utilde{\bar{v}}\cdot\nabla \bar{v}_x \right] \\ =& -\dfrac{\partial \bar{p}}{\partial x} - \left[ \dfrac{\partial \bar{\tau}^{\text{total}}_{xx}}{\partial x} + \dfrac{\partial \bar{\tau}^{\text{total}}_{yx}}{\partial y} + \dfrac{\partial \bar{\tau}^{\text{total}}_{zx}}{\partial z} \right] + \rho g_x \end{aligned}
Total shear stress (viscous + turbulent) τˉyxtotal=τˉyx(v)+τˉyx(t)=τˉyx+ρvyvx\begin{aligned} \bar{\tau}^{\text{total}}_{yx} &= \bar{\tau}_{yx}^{(v)} + \bar{\tau}_{yx}^{(t)} \\ &= \bar{\tau}_{yx} + \rho \overline{v_y' v_x'} \end{aligned}
Description Equations
Shear stress distribution in round tube τrθ=12[P0P1L]r\tau_{r\theta} = \dfrac{1}{2}\left[\dfrac{\mathcal{P}_0 - \mathcal{P}_1}{L}\right]r
Shear stress distribution in general conduit τrθ=[P0P1L]RH\tau_{r\theta} = \left[\dfrac{\mathcal{P}_0 - \mathcal{P}_1}{L}\right] R_H
Hydraulic radius RH=cross sectional areawetted perimeterR_H = \mathrm{\dfrac{cross \ sectional \ area}{wetted \ perimeter}}
Characteristic length lchar=4RHl_{\text{char}} = 4R_H
Characteristic velocity vchar=vzv_{\text{char}} = \langle v_z \rangle
Layer Normalized velocity Normalized length range
Laminar sublayer v+=y+v^+ = y^+ y+(0,5)y^+ \in (0, 5)
Buffer layer v+=5ln(y++0.205)3.27v^+ = 5 \ln(y^+ + 0.205) - 3.27 y+(5,30)y^+ \in (5, 30)
Turbulent core v+=2.5ln(y+)+5.5v^+ = 2.5 \ln(y^+) + 5.5 y+(30,)y^+ \in (30, \infty)
Description Equations
Characteristic length y=μvρy_* = \dfrac{\mu}{v_* \rho}
Characteristic velocity v=τ0ρv_* = \sqrt{\dfrac{\tau^0}{\rho}}
Normalized length y+=yyy^+ = \dfrac{y}{y_*}
Normalized velocity v+=vvv^+ = \dfrac{v}{v_*}
Eddie viscosity μ(t)=τˉyztotal(dvzdy)μ=[P0P1L]r2(dvzdy)μ\mu^{(t)} = - \dfrac{\bar{\tau}_{yz}^{\text{total}}}{\left(\frac{dv_z}{dy}\right)} - \mu = - \dfrac{\left[\frac{\mathcal{P}_0 - \mathcal{P}_1}{L}\right] \frac{r}{2}}{\left(\frac{dv_z}{dy}\right)} - \mu
Description Equations
★ Non-Stoke’s law condition Re0.1\mathrm{Re} \ge 0.1
Nondimensionalized continuity equation ˘v˘~=0\breve{\nabla}\cdot\utilde{\breve{v}} = 0
x-component of momentum equation Dv˘xDt˘=p˘x˘+1Re˘2v˘x+1Frg˘x\dfrac{D\breve{v}_x}{D\breve{t}} = -\dfrac{\partial\breve{p}}{\partial\breve{x}} + \dfrac{1}{\mathrm{Re}}\breve{\nabla}^2 \breve{v}_x + \dfrac{1}{\mathrm{Fr}}\breve{g}_x
Drag coefficient
Friction factor
cD=f=FD12ρv2Aapproachc_D = f = \dfrac{F_D}{\frac{1}{2}\rho v_\infty^2 A_{\text{approach}}}
Drag coefficient in Stoke’s law region cD=24Rec_D = \dfrac{24}{\mathrm{Re}}
Drag coefficient in non-Stoke’s law region cD=(24Re+0.5407)2c_D = \left(\sqrt{\dfrac{24}{\mathrm{Re}}} + 0.5407\right)^2
Description Equations
Reynolds number Re=l0v0ρμ=inertial forcesviscous forces\mathrm{Re} = \dfrac{l_0 v_0 \rho}{\mu} = \mathrm{\dfrac{inertial \ forces}{viscous \ forces}}
Froude number Fr=v02gl0=inertial forcesgravitational forces\mathrm{Fr} = \dfrac{v_0^2}{gl_0} = \mathrm{\dfrac{inertial \ forces}{gravitational \ forces}}
Capillary number Ca=μv0σ=viscous forcessurface tension forces\mathrm{Ca} = \dfrac{\mu v_0}{\sigma} = \mathrm{\dfrac{viscous \ forces}{surface \ tension \ forces}}
Weber number Fr=l0ρv02σ=inertial forcessurface tension forces\mathrm{Fr} = \dfrac{l_0 \rho v_0^2}{\sigma} = \mathrm{\dfrac{inertial \ forces}{surface \ tension \ forces}}
Euler’s number Eu=(Δp)D4ρQ2\mathrm{Eu} = \dfrac{(\Delta p)D^4}{\rho Q^2}
  • Buckingham π\pi theorem - A function f(X1,X2,,Xk)f(X_1, X_2, \dots, X_k) with dimensional variables XiX_i can be rewritten in a function Φ(Π1,Π2,,Πkn)\Phi(\Pi_1, \Pi_2, \dots, \Pi_{k-n}) with dimensionless variables Πj\Pi_j by enforcing dimensional consistency using nn fundamental dimensions.
    • Define fundamental dimensions
    • Choose stand-in variables for fundamental dimensions
    • Rewrite other variables in terms of stand-in variables to get dimensionless groups
Assumptions Equations
Constant density fluid Δρ=0\Delta \rho = 0
1D flow in zz direction vr=vθ=0v_r = v_\theta = 0
Plug flow - uniform velocity across cross section v=v=constantvz=vz(z)\langle v \rangle = v = \mathrm{constant} \newline v_z = v_z(z)
Inviscid flow μ0,Re10000\mu \approx 0, \mathrm{Re} \ge 10000
No sharp bends Straight stream lines
Description Equations
Continuity equation Q1=Q2A1v1=A2v2\begin{aligned} Q_1 &= Q_2 \\ A_1 \langle v \rangle_1 &= A_2 \langle v \rangle_2 \end{aligned}
Equation of motion ρvdvdz=dpdzρgdhdz\rho v \dfrac{dv}{dz} = -\dfrac{dp}{dz} - \rho g \dfrac{dh}{dz}
Description Equations
Bernoulli equation (energy form) p1+12ρv12+ρgh1=p2+12ρv22+ρgh2p_1 + \frac{1}{2}\rho v_1^2 + \rho gh_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho gh_2
Bernoulli equation (head form) v122g+p1ρg+h1=v222g+p2ρg+h2\dfrac{v_1^2}{2g} + \dfrac{p_1}{\rho g} + h_1 = \dfrac{v_2^2}{2g} + \dfrac{p_2}{\rho g} + h_2
Bernoulli head B=v22g+pρg+h=constant\mathcal{B} = \dfrac{v^2}{2g} + \dfrac{p}{\rho g} + h = \mathrm{constant}
Drag coefficient cD=FD12ρv2Aapproachc_D = \dfrac{F_D}{\frac{1}{2}\rho v_\infty^2 A_{\text{approach}}}
Lift coefficient cL=FL12ρv2Aplanformc_L = \dfrac{F_L}{\frac{1}{2}\rho v_\infty^2 A_{\text{planform}}}
Pressure change in contracting conduit
Δpp1p2\Delta p \equiv p_1 - p_2
Δp=8ρQ2π2D14[(D1D2)41]+ρg(h2h1)\Delta p = \dfrac{8\rho Q^2}{\pi^2 D_1^4}\left[\left(\dfrac{D_1}{D_2}\right)^4 - 1\right] + \rho g (h_2 - h_1)
Torricelli’s law v=2gΔh\langle v \rangle = \sqrt{2g\Delta h}
Pressure at stagnation point p=pstatic+pdynamic=pstatic+12ρv2\begin{aligned} p &= p_{\text{static}} + p_{\text{dynamic}} \\ &= p_{\text{static}} + \textstyle\frac{1}{2}\rho v_\infty^2 \end{aligned}
Description Equations
Manometer equation Δp=(ρmρ)gH\Delta p = (\rho_\mathrm{m} - \rho)gH
Local velocity
Pitot tube
v=2Δpρv = \sqrt{\dfrac{2\Delta p}{\rho}}
Volumetric flow rate
Venturi meter c0[0.96,0.98]c_0 \in [0.96, 0.98]
Orfice meter c0[0.40,0.80]c_0 \in [0.40, 0.80]
Nozzle meter c0[0.96,0.98]c_0 \in [0.96, 0.98]
Q=c0πD02Δp8ρ[1(D0D)4]Q = c_0\pi D_0^2 \sqrt{\dfrac{\Delta p}{8\rho [1 - (\frac{D_0}{D})^4]}}
Rotameter Calibrated specifically to the fluid with falling sphere
Description Equations
Full Bernoulli equation v122g+p1ρg+h1=v222g+p2ρg+h2+HL12\dfrac{v_1^2}{2g} + \dfrac{p_1}{\rho g} + h_1 = \dfrac{v_2^2}{2g} + \dfrac{p_2}{\rho g} + h_2 + H_{L12}
Head loss HL12=HL12f+HL12cH_{L12} = H_{L12f} + H_{L12c}
Skin friction loss HL12fH_{L12f} Viscous work done per unit weight by fluid on walls of conduit in moving from 1 to 2
Skin friction loss (general) HL12f=τ0LρgRHH_{L12f} = \dfrac{\tau^0 L}{\rho g R_H}
Skin friction loss for circular tube HL12f=4τ0LρgDH_{L12f} = \dfrac{4\tau^0 L}{\rho g D}
Fanning friction factor f=τ012ρv2f = \dfrac{\tau^0}{\frac{1}{2}\rho \langle v \rangle^2}
Skin friction loss for circular tube HL12f=2v2LgDf=32Q2Lπ2D5gfH_{L12f} = \dfrac{2\langle v \rangle^2 L}{g D}f = \dfrac{32Q^2 L}{\pi^2 D^5 g}f
Skin friction loss for non-circular tube HL12f=v2L2gRHf=Q2L2gAc2RHfH_{L12f} = \dfrac{\langle v \rangle^2 L}{2 g R_H}f = \dfrac{Q^2 L}{2g A_c^2 R_H}f
Reynolds number for noncircular pipes Re=4RHvρμ\mathrm{Re} = \dfrac{4R_H \langle v \rangle \rho}{\mu}
Configurational loss of one fitting in circular tube HLc=evvdownstream22gH_{Lc} = e_v\dfrac{\langle v \rangle^2_{\text{downstream}}}{2g}
Configurational loss of all fittings in circular tube HL12c=vdown22g(iev,i)=8Q2π2D4g(iev,i)H_{L12c} = \dfrac{\langle v \rangle^2_{\text{down}}}{2g} (\sum\limits_i e_{v, i}) = \dfrac{8Q^2}{\pi^2 D^4 g} (\sum\limits_i e_{v, i})
Total head loss for circular tube HL12={2v2Dg[(iLi)f+D4(iev,i)]32Q2π2D5g[(iLi)f+D4(iev,i)]H_{L12} = \begin{cases} \dfrac{2 \langle v \rangle^2}{Dg} [(\sum\limits_i L_i)f + \frac{D}{4} (\sum\limits_i e_{v, i})] \\ \dfrac{32 Q^2}{\pi^2 D^5 g} [(\sum\limits_i L_i)f + \frac{D}{4} (\sum\limits_i e_{v, i})] \end{cases}
Kinetic head correction factor α=v3v3\alpha = \dfrac{\langle v^3 \rangle}{\langle v \rangle^3}
Brake horse power bhp=Pη=HpρgQη\mathrm{bhp} = \dfrac{P}{\eta} = \dfrac{H_p \rho g Q}{\eta}
Description Equations Conditions
Hydraulically smooth pipes (Blasius) f=0.0791Re1/4f = \dfrac{0.0791}{\mathrm{Re}^1/4} Re[2100,105]\mathrm{Re} \in [2100, 10^5]
Hydraulically smooth pipes (Koo) f=0.0014+0.125Re0.32f = 0.0014 + \dfrac{0.125}{\mathrm{Re}^{0.32}} Re[104,107]\mathrm{Re} \in [10^4, 10^7]
Pipes of general roughness (Haaland) 1f=3.6log10[6.9Re+(k/D3.7)10/9]\dfrac{1}{\sqrt{f}} = -3.6\log_{10} \left[\dfrac{6.9}{\mathrm{Re}} + \left(\dfrac{k/D}{3.7}\right)^{10/9}\right] Re[4×104,107]k/D<0.05\mathrm{Re} \in [4\times 10^4, 10^7] \newline k/D < 0.05
Commercial standard piping (Drew) f=0.0014+0.090Re0.27f = 0.0014 + \dfrac{0.090}{\mathrm{Re}^{0.27}} Re[104,107]k/D0.00015\mathrm{Re} \in [10^4, 10^7] \newline k/D \approx 0.00015
Full rough conduit 1f=2.284.0log10(kD)\dfrac{1}{\sqrt{f}} = 2.28 - 4.0 \log_{10} \left(\dfrac{k}{D}\right) Re>104k/D>0.01\mathrm{Re} > 10^4 \newline k/D > 0.01
Re\mathrm{Re} nn α\alpha
2×1031042 \times 10^3 \sim 10^4 66 1.081.08
10410510^4 \sim 10^5 77 1.061.06
10510710^5 \sim 10^7 88 1.051.05
Description Equations
Specific area of packing element av=area of packing elementvolume of packing elementa_v = \dfrac{\text{area of packing element}}{\text{volume of packing element}}
Effective diameter of packing element (particle) Dp=6avD_p = \dfrac{6}{a_v}
Darcy’s law
Rebed10\mathrm{Re_{bed}} \lesssim 10
v=κμ[P0PLL]\langle v \rangle = \dfrac{\kappa}{\mu} \left[ \dfrac{\mathcal{P}_0 - \mathcal{P}_L}{L} \right]
Volumetric flow rate Q=vεA=v0AQ = \langle v \rangle \varepsilon A = v_0 A
Superficial velocity v0=vεv_0 = \langle v \rangle \varepsilon
Bed Reynolds number Rebed=Dpv0ρμ11ε=Dpvρμε1ε=DpQρμA11ε\begin{aligned}\mathrm{Re_{bed}} &= \dfrac{D_p v_0 \rho}{\mu}\dfrac{1}{1 - \varepsilon} \\ &= \dfrac{D_p \langle v \rangle \rho}{\mu}\dfrac{\varepsilon}{1 - \varepsilon} \\ &= \dfrac{D_p Q \rho}{\mu A}\dfrac{1}{1 - \varepsilon}\end{aligned}
Tube Reynolds number Retube=23Rebed\mathrm{Re_{tube}} = \dfrac{2}{3}\mathrm{Re_{bed}}
Hydrolic radius RH=Dpε6(1ε)R_H = \dfrac{D_p\varepsilon}{6(1-\varepsilon)}
Friction factor of tube
Rebed10\mathrm{Re_{bed}} \le 10
ftube=24(1ε)μDpv0ρf_{\text{tube}} = \dfrac{24(1-\varepsilon)\mu}{D_p v_0 \rho}
Friction factor of tube
Rebed>1000\mathrm{Re_{bed}} > 1000
ftube=712f_{\text{tube}} = \dfrac{7}{12}
Bed permeability κ=Dp2150(ε1ε)2\kappa = \dfrac{D_p^2}{150} \left(\dfrac{\varepsilon}{1-\varepsilon}\right)^2
Blake-Kozeny equation
Rebed10\mathrm{Re_{bed}} \le 10
[P0PLL]=150μv0Dp2(1ε)2ε3\left[ \dfrac{\mathcal{P}_0 - \mathcal{P}_L}{L} \right] = 150 \dfrac{\mu v_0}{D_p^2}\dfrac{(1-\varepsilon)^2}{\varepsilon^3}
Burke-Plummer equation
Rebed>1000\mathrm{Re_{bed}} > 1000
[P0PLL]=74ρv02Dp1εε2\left[ \dfrac{\mathcal{P}_0 - \mathcal{P}_L}{L} \right] = \dfrac{7}{4}\dfrac{\rho v_0^2}{D_p}\dfrac{1-\varepsilon}{\varepsilon^2}
Superficial mass flux G0=ρv0=m˙AG_0 = \rho v_0 = \dfrac{\dot{m}}{A}
Ergun equation
Rebed[10,1000]\mathrm{Re_{bed}} \in [10, 1000]
[(P0PL)ρG02]DpLε31ε=150[1εDpG0μ]+74[(P0PL)ρG02]DpLε31ε=1501Rebed+74\left[ \dfrac{(\mathcal{P}_0 - \mathcal{P}_L)\rho}{G_0^2} \right] \dfrac{D_p}{L}\dfrac{\varepsilon^3}{1-\varepsilon} = 150 \left[ \dfrac{1-\varepsilon}{\frac{D_p G_0}{\mu}} \right] + \dfrac{7}{4} \newline \left[ \dfrac{(\mathcal{P}_0 - \mathcal{P}_L)\rho}{G_0^2} \right] \dfrac{D_p}{L}\dfrac{\varepsilon^3}{1-\varepsilon} = 150 \dfrac{1}{\mathrm{Re_{bed}}} + \dfrac{7}{4}
Description Equations
Cavitation number σ=pApC12ρv2\sigma = \dfrac{p_A - p_C}{\frac{1}{2}\rho v_\infty^2}
Description Equations
Velocity profile vθ=rΩv_\theta = r\Omega
Pressure difference
★ 1 defined arbitrarily, 2 defined at center
p2p1=12ρΩ2(r22r12)+ρg(z1z2)p_2 - p_1 = \dfrac{1}{2}\rho\Omega^2 (r_2^2 - r_1^2) + \rho g (z_1 - z_2)
Height h=Ω22gr2h = \dfrac{\Omega^2}{2g} r^2
Description Equations
Pressure difference
★ 1 defined arbitrarily, 2 defined at rr \to\infty
p2p1=12ρC2(1r121r22)+ρg(z1z2)p_2 - p_1 = \dfrac{1}{2}\rho C^2 \left(\dfrac{1}{r_1^2} - \dfrac{1}{r_2^2}\right) + \rho g (z_1 - z_2)
Depth h=C22g1r2h = \dfrac{C^2}{2g} \dfrac{1}{r^2}
Description Equations
Mean free path λ=12πd2nλ(μm)3.1×103T(K)σ2(A˚2)p(atm)\lambda = \dfrac{1}{\sqrt{2}\pi d^2 n} \newline \lambda(\mathrm{\mu m}) \approx 3.1\times 10^{-3} \dfrac{T(\mathrm{K})}{\sigma^2(\mathrm{\mathring{A}^2}) p(\mathrm{atm})}
Knudsen number Kn=λLc\mathrm{Kn} = \dfrac{\lambda}{L_c}
Characteristics Range
Molecular flow Kn(10,)\mathrm{Kn} \in (10, \infty)
Transition flow Kn(0.1,10)\mathrm{Kn} \in (0.1, 10)
N-S equations hold, but no-slip condition fails Kn(0.001,0.1)\mathrm{Kn} \in (0.001, 0.1)
N-S equations hold, and no-slip condition holds Kn(0,0.001)\mathrm{Kn} \in (0, 0.001)
  • Viscous force dominate over inertial forces and gravity forces
    • Driving force
      • Pressure
      • Capillary (surface tension) forces
      • Electro-kinetic forces
      • Magnetic forces
    • Resisting forces: viscous force, dominated by wall effects
Description Equations
Reynolds number
★ Creeping flow
Re=inertial forcesviscous forces=Lvρμ0\mathrm{Re} = \dfrac{\text{inertial forces}}{\text{viscous forces}} = \dfrac{Lv\rho}{\mu} \to 0
Froude number Fr=inertial forcesgravity forces=v2gL\mathrm{Fr} = \dfrac{\text{inertial forces}}{\text{gravity forces}} = \dfrac{v^2}{gL}
Viscous force dominates gravity force ReFr=gravity forcesviscous forces=gL2μv0\mathrm{\dfrac{Re}{Fr}} = \dfrac{\text{gravity forces}}{\text{viscous forces}} = \dfrac{gL^2}{\mu v} \to 0
Description Equations
Differential equation of generalized H-P flow 0=ΔpL+μ(2vzx2+2vzy2)0 = \dfrac{\Delta p}{L} + \mu \left(\dfrac{\partial^2 v_z}{\partial x^2} + \dfrac{\partial^2 v_z}{\partial y^2}\right)
No-slip condition
F(x,y)F(x, y) is equation of conduit perimeter
vz(x,y)=0forF(x,y)=0v_z(x, y) = 0 for F(x, y) = 0
Velocity profile vz(x,y)=ΔpμLF(x,y)v_z(x, y) = \dfrac{\Delta p}{\mu L} F(x, y)
Volumetric flow rate Q=ΔpμLF(x,y) dy dxQ = \dfrac{\Delta p}{\mu L} \displaystyle\iint F(x, y) \ dy\ dx
Description Equations
Flow equation Δp=RhydQ\Delta p = \mathcal{R}_{\text{hyd}}Q
Volumetric flow rate Q=ΔpRhydQ = \dfrac{\Delta p}{\mathcal{R}_{\text{hyd}}}
Description Equations
Pressure difference Δp=σκ=2σR\Delta p = \sigma\kappa = \dfrac{2\sigma}{R}
Wicking velocity v=r28μΔPx=rσcosθ4μxv = \dfrac{r^2}{8\mu}\dfrac{\Delta P}{x} = \dfrac{r\sigma \cos\theta}{4\mu x}
Washburn equation x=rσcosθ2μttx = \sqrt{\dfrac{r\sigma\cos\theta}{2\mu} t} \propto \sqrt{t}
Wicking into porous media h=reσcosθ2μtth = \sqrt{\dfrac{r_e\sigma\cos\theta}{2\mu} t} \propto \sqrt{t}