CHEM E 325 Energy and Entropy

Contents
Description Equations
Pressure (kinetic theory) P=FAP = \dfrac{F}{A}
Ideal gas law PV=nRTPv=RTPV = nRT \newline Pv = RT
Quality q=nvnl+nvq = \dfrac{n_v}{n_l + n_v}
Fraction xA=fαxAα+(1fα)xAβx_A = f^\alpha x_A^\alpha + (1-f^\alpha)x_A^\beta
Lever rule for intensive properties vtotal=vvq+vl(1q)v_{\text{total}} = v_v q + v_l (1-q)
Gibbs phase rule F=2+cpr\mathcal{F} = 2 + c - p - r
Mole fraction xi=nijnjx_i = \dfrac{n_i}{\sum_j n_j}
Description Equations
Keesom potential (dipole-dipole) Γij=23μi2μj2rij6kBT\Gamma_{ij} = -\dfrac{2}{3}\dfrac{\mu_i^2 \mu_j^2}{r_{ij}^6 k_B T}
Debye potential (dipole-induced dipole) Γij=αiμj2rij6\Gamma_{ij} = -\dfrac{\alpha_i \mu_j^2}{r_{ij}^6}
London dispersion potential (induced dipole-induced dipole) Γij=32αiαjrij611Ii+1Ij\Gamma_{ij} = -\dfrac{3}{2}\dfrac{\alpha_i \alpha_j}{r_{ij}^6}\dfrac{1}{\frac{1}{I_i} + \frac{1}{I_j}}
Lennard-Jones potential Γ=4ε[(σr)12(σr)6]\Gamma = 4\varepsilon \left[ \left(\dfrac{\sigma}{r}\right)^{12} - \left(\dfrac{\sigma}{r}\right)^{6} \right]
Equilibrium intermolecular distance r(Γmin)=r(ε)=21/6σ=1.12σr(\Gamma_{\min}) = r(\varepsilon) = 2^{1/6}\sigma = 1.12 \sigma
Description Equations
Nondimensionalized distance r=rσ“r” = \dfrac{r}{\sigma}
Nondimensionalized temperature T=kBTε“T” = \dfrac{k_BT}{\varepsilon}
Nondimensionalized pressure P=σ3εP“P” = \dfrac{\sigma^3}{\varepsilon}P
Nondimensionalized energy E=Uε“E” = \dfrac{U}{\varepsilon}
Nondimensionalized time t=tσm/ε“t” = \dfrac{t}{\sigma \sqrt{m/\varepsilon}}
Kinetic energy and temperature KE=nT\mathrm{KE} = nT
Ideal gas pair potential energy PE=0\mathrm{PE} = 0
Condensed phase interaction potential energy
(with normalized energy unit of ε\varepsilon)
PE=Ninter\mathrm{PE} = -N_{\text{inter}}
Amount of interactions Ninter=12N_{\text{inter}} = \frac{1}{2}(# molecules)(# neighbors)
Description Equations
van der Waals EOS in terms of PP P=RTvbav2P = \dfrac{RT}{v-b} - \dfrac{a}{v^2}
van der Waals EOS in terms of vv v3(RTvb)v2+aPvaPb=0v^3 - \left(\dfrac{RT}{v-b}\right) v^2 + \dfrac{a}{P} v - \dfrac{a}{P}b = 0
van der Waals parameter aa a=2764(RTc)2Pca = \dfrac{27}{64}\dfrac{(RT_c)^2}{P_c}
van der Waals parameter bb b=RTc8Pcb = \dfrac{RT_c}{8P_c}
Molar potential energy ep=ave_p = -\dfrac{a}{v}
Pressure at zero kinetic energy P=av2P = - \dfrac{a}{v^2}
Reduced temperature Tr=TTcT_r = \dfrac{T}{T_c}
Reduced pressure Pr=PPcP_r = \dfrac{P}{P_c}
Compressibility factor z=vrealvideal=PvRTz = \dfrac{v_{\text{real}}}{v_{\text{ideal}}} = \dfrac{Pv}{RT}
Potential energy ep=ureal(T,P)uideal(T,P=0)e_p = u_{\text{real}}(T, P) - u_{\text{ideal}}(T, P=0)
Internal energy departure function epRTc=urealuidealRTc\dfrac{e_p}{RT_c} = \dfrac{u_{\text{real}} - u_{\text{ideal}}}{RT_c}
Internal energy departure function in van der Waals EOS epRTc=27Pr64Trz\dfrac{e_p}{RT_c} = -\dfrac{27 P_r}{64T_r z}
Description Equations
Lee-Kesler compressibility factor z=z(0)+ωz(1)z = z^{(0)} + \omega z^{(1)}
Acentric factor ω=1log10(Prsat(Tr=0.7))\omega = -1-\log_{10}(P^{\text{sat}}_r(T_r=0.7))
General departure function in Lee-Kesler EOS dep=dep(0)+ω dep(1)\text{dep} = \text{dep}^{(0)} + \omega \ \text{dep}^{(1)}
Internal energy and enthalpy departure function urealuidealRTc=hrealhidealRTc+Tr(1z)\dfrac{u_{\text{real}} - u_{\text{ideal}}}{RT_c} = \dfrac{h_{\text{real}} - h_{\text{ideal}}}{RT_c} + T_r (1-z)
System Type First Law of Thermodynamics
Isolated system ΔU=0\Delta U = 0
Closed system ΔU=Q+W\Delta U = Q + W
Open system dUdt=inn˙ihioutn˙ihi+Qi˙+Ws˙\dfrac{dU}{dt} = \sum\limits_{\text{in}} \dot{n}_i h_i - \sum\limits_{\text{out}} \dot{n}_i h_i + \sum \dot{Q_i} + \dot{W_s}
Open system in steady state 0=inn˙ihioutn˙ihi+Qi˙+Ws˙0 = \sum\limits_{\text{in}} \dot{n}_i h_i - \sum\limits_{\text{out}} \dot{n}_i h_i + \sum \dot{Q_i} + \dot{W_s}
Description Equations
Work W=P dVW = \displaystyle\int P \ dV
Enthalpy H=U+PVH = U + PV
Constant volume molar heat capacity cv=(uT)vc_v = \left(\dfrac{\partial u}{\partial T}\right)_v
Constant pressure molar heat capacity cP=(hT)Pc_P = \left(\dfrac{\partial h}{\partial T}\right)_P
Relationship between molar heat capacities cP=cv+Rc_P = c_v + R
System Type Second Law of Thermodynamics
Isolated system
Sgen0S_{\text{gen}} \ge 0
ΔS=Sgen\Delta S = S_{\text{gen}}
Closed system
Sgen0S_{\text{gen}} \ge 0
ΔS=δQT+Sgen\Delta S = \displaystyle\int \dfrac{\delta Q}{T} + S_{\text{gen}}
Open system
S˙gen0\dot{S}_{\text{gen}} \ge 0
dSdt=inn˙isioutn˙isi+Qi˙Ti+S˙gen\dfrac{dS}{dt} = \sum\limits_{\text{in}} \dot{n}_i s_i - \sum\limits_{\text{out}} \dot{n}_i s_i + \sum \dfrac{\dot{Q_i}}{T_i} + \dot{S}_{\text{gen}}
Open system in steady state
S˙gen0\dot{S}_{\text{gen}} \ge 0
0=inn˙isioutn˙isi+Qi˙Ti+S˙gen0 = \sum\limits_{\text{in}} \dot{n}_i s_i - \sum\limits_{\text{out}} \dot{n}_i s_i + \sum \dfrac{\dot{Q_i}}{T_i} + \dot{S}_{\text{gen}}
Description Equations
Ergotic hypothesis f=f\lvert f \rvert = \langle f \rangle
Equal probability postulate Pj=1ΩP_j = \dfrac{1}{\Omega}
Entropy S=kBlnΩS = k_B \ln\Omega
Permutability
NAN_A distinguishable particles in NN sites
Π=N!(NNA)!\Pi = \dfrac{N!}{(N-N_A)!}
Multiplicity
NAN_A indistinguishable particles in NN sites
Ω=N!NA!(NNA)!\Omega = \dfrac{N!}{N_A!(N-N_A)!}
Multiplicity
NA,NB,N_A, N_B, … indistinguishable particles in NN sites
Ω=N!NA!NB!NC!\Omega = \dfrac{N!}{N_A!N_B!N_C! \cdots}
Stirling approximation limaln(a!)=aln(a)a\lim\limits_{a \to\infty} \ln(a!) = a \ln(a) - a
Entropy of NN sites with fraction xx activated S=kBN[xln(x)(1x)ln(1x)]S = k_BN[-x\ln(x) - (1-x)\ln(1-x)]
Description Equations
Molar entropy
C\mathcal{C} = constant
s=Rln(vu3/2)+Cs = R\ln(vu^{3/2}) + \mathcal{C}
Molar internal energy
C\mathcal{C} = constant
u=Cv2/3exp(23sR)u = \mathcal{C}v^{-2/3}\exp\left(\dfrac{2}{3}\dfrac{s}{R}\right)
Temperature T=(us)vT = \left(\dfrac{\partial u}{\partial s}\right)_v
Pressure P=(uv)sP = -\left(\dfrac{\partial u}{\partial v}\right)_s
Fundamental property relation du=TdsPdvdu = T ds - P dv
Reversible heat at constant vv Δu=q=T ds\Delta u = q = \int T \ ds
Reversible work at constant ss w=P dvw = - \int P \ dv
Description Equations
Reversible process sgen=0s_{\text{gen}} = 0
Irreversible process (caused by temperature gradient) sgen>0s_{\text{gen}} > 0

Isoenergetic process (Δu=0    ΔT=0\Delta u = 0 \implies \Delta T = 0) of ideal gas has similar analysis.

Description Equations
Condition
★ Ideal gas
ΔT=0\Delta T = 0
Internal energy change Δu=0\Delta u = 0
Enthalpy change Δh=0\Delta h = 0
First law Δu=q+w=0\Delta u = q + w = 0
Work (changing volume) w=RTvdv=RTln(v2v1)w = -\displaystyle\int \dfrac{RT}{v} dv = -RT\ln\left(\dfrac{v_2}{v_1}\right)
Work (changing pressure) w=RTPdP=RTln(P2P1)w = \displaystyle\int \dfrac{RT}{P} dP = RT\ln\left(\dfrac{P_2}{P_1}\right)
Heat q=wq = -w
Entropy change Δs=δqT=qT=wT\Delta s = \displaystyle\int \dfrac{\delta q}{T} = \dfrac{q}{T} = -\dfrac{w}{T}
Entropy change (changing volume) Δs=Rln(v2v1)\Delta s = R\ln\left(\dfrac{v_2}{v_1}\right)
Entropy change (changing concentration) Δs=Rln(c2c1)\Delta s = -R\ln\left(\dfrac{c_2}{c_1}\right)
Entropy change (changing pressure) Δs=Rln(P2P1)\Delta s = -R\ln\left(\dfrac{P_2}{P_1}\right)
Description Equations
Condition
★ Ideal gas
q=0q = 0
First law Δu=w\Delta u = w
Enthalpy change Δh=Δu+RΔT\Delta h = \Delta u + R \Delta T
Work (changing volume) w=RTvdv=RTln(v2v1)w = -\displaystyle\int \dfrac{RT}{v} dv = -RT\ln\left(\dfrac{v_2}{v_1}\right)
Work (changing pressure) w=RTPdP=RTln(P2P1)w = \displaystyle\int \dfrac{RT}{P} dP = RT\ln\left(\dfrac{P_2}{P_1}\right)
Entropy change Δs=0\Delta s = 0
Description Equations
Condition
★ Ideal gas
Δv=0\Delta v = 0
Work w=0w = 0
Internal energy change Δu=cv dT\Delta u = \displaystyle\int c_v \ dT
First law q=Δuq = \Delta u
Entropy change Δs=δqT=duT=cvT dT\Delta s = \displaystyle\int \dfrac{\delta q}{T} = \int \dfrac{du}{T} = \int \dfrac{c_v}{T} \ dT
Description Equations
Condition
★ Ideal gas
ΔP=0\Delta P = 0
Internal energy change Δu=cv dT\Delta u = \displaystyle\int c_v \ dT
Enthalpy change Δh=cp dT\Delta h = \displaystyle\int c_p \ dT
Work w=PΔvw = -P\Delta v
Heat q=Δhq = \Delta h
Entropy change Δs=δqT=dhT=cpT dT\Delta s = \displaystyle\int \dfrac{\delta q}{T} = \int \dfrac{dh}{T} = \int \dfrac{c_p}{T} \ dT
Description Equations
Incompressible condensed phases v0v_0 is constant, small
Incompressible condensed phases at low pressure Δu=Δh=cp dT\Delta u = \Delta h = \displaystyle\int c_p \ dT
Incompressible condensed phases at high pressure Δh=cp dT+v0(P1P0)\Delta h = \displaystyle\int c_p \ dT + v_0(P_1 - P_0)
Incompressible condensed phases Δs=cpTdT=cpln(T1T2)\Delta s = \displaystyle\int \dfrac{c_p}{T} dT = c_p \ln\left(\dfrac{T_1}{T_2}\right)
Phase change Δh=qΔs=qT=ΔhT\Delta h = q \newline \Delta s = \dfrac{q}{T} = \dfrac{\Delta h}{T}
Description Equations
Maximum work of heat engine Wmax=Qin(1TcTh)W_{\max} = Q_{\text{in}} \left(1 - \dfrac{T_c}{T_h}\right)
Minimum work of heat heat pump Wmax=Qout(1TcTh)W_{\max} = Q_{\text{out}} \left(1 - \dfrac{T_c}{T_h}\right)
Reversible work Wrev=Q1(1TcTh)W_{\text{rev}} = Q_{1} \left(1 - \dfrac{T_c}{T_h}\right)
Carnot efficiency η=WrevQ1=1TcTh\eta = \dfrac{W_{\text{rev}}}{Q_1} = 1 - \dfrac{T_c}{T_h}
Ideal gas entropy Δs(T,v)=cvTdT+Rln(vv0)\Delta s(T, v) = \displaystyle\int \dfrac{c_v}{T} dT + R \ln\left(\dfrac{v}{v_0}\right)
Ideal gas entropy Δs(T,P)=cpTdTRln(PP0)\Delta s(T, P) = \displaystyle\int \dfrac{c_p}{T} dT - R \ln\left(\dfrac{P}{P_0}\right)
Lost work Wlost=TcsgenW_{\text{lost}} = T_c s_{\text{gen}}
Exthalpy for multi-stream E˙=W˙rev=isourcen˙i(hiT0si)igroundn˙i(hiT0si)\dot{E} = \dot{W}_{\text{rev}} \newline = \sum\limits_{i}^{\text{source}} \dot{n}_i (h_i - T_0 s_i) - \sum\limits_{i}^{\text{ground}} \dot{n}_i (h_i^\circ - T_0 s_i^\circ)
Exthalpy for single stream W˙rev=ΔhT0Δs\dot{W}_{\text{rev}} = \Delta h - T_0 \Delta s
Description Equations
Gibbs free energy (constant T,PT, P) G=HTSG = H - TS
Helmholtz free energy (constant T,VT, V) F=A=UTSF = A = U - TS
Entropy change of universe ΔSuniv0\Delta S_{\text{univ}} \ge 0
Gibbs free energy change of spontaneous process ΔG0\Delta G \le 0
Helmholtz free energy change of spontaneous process ΔF0\Delta F \le 0
Thermal equilibrium Tα=TβT^\alpha = T^\beta
Mechanical equilibrium Pα=PβP^\alpha = P^\beta
Chemical equilibrium gα=gβg^\alpha = g^\beta
Clausius-Clapeyron equation dlnPsatd(1/T)=1RΔhvap(T)\dfrac{d \ln P_{\text{sat}}}{d (1/T)} = -\dfrac{1}{R}\Delta h_{\text{vap}}(T)
Clausius-Clapeyron equation
★ modest pressure, incompressible liquid, ideal gas, constant Δhvap\Delta h_{\text{vap}}
ln(PsatP0)=ΔhvapR(1T1T0)\ln\left(\dfrac{P_{\text{sat}}}{P_0}\right) = -\dfrac{\Delta h_{\text{vap}}^\circ}{R} \left(\dfrac{1}{T} - \dfrac{1}{T_0}\right)
Antoine equation ln(Psat)=ABC+T\ln(P_{\text{sat}}) = A - \dfrac{B}{C + T}
Description Equations
Partial molar properties xˉi=(xni)others,nji\bar{x}_i = \left(\dfrac{\partial x}{\partial n_i}\right)_{\mathrm{others}, n_{j \not = i}}
Partial molar gibbs free energy gˉi=(Gni)T,P,nji\bar{g}_i = \left(\dfrac{\partial G}{\partial n_i}\right)_{T, P, n_{j \not = i}}
Partial molar gibbs free energy gˉi=hˉiTsˉi\bar{g}_i = \bar{h}_i - T\bar{s}_i
Entropy S=(GT)P,njS = -\left(\dfrac{\partial G}{\partial T}\right)_{P, n_{j}}
Volume V=(GP)T,njV = \left(\dfrac{\partial G}{\partial P}\right)_{T, n_{j}}
Total derivative of gibbs free energy dG=S dT+V dP+igˉi dnidG = -S \ dT + V \ dP + \sum\limits_i \bar{g}_i \ dn_i
Chemical potential μi=gˉi\mu_i = \bar{g}_i
Chemical equilibrium μiα=μiβ\mu_i^\alpha = \mu_i^\beta
Raoult’s law PA=xAgP=xAlPAsatP_A = x_A^g P = x_A^l P_A^{\text{sat}}
Condensation curve P=(PAsatPBsat)xAl+PBsatP = (P_A^{\text{sat}} - P_B^{\text{sat}})x_A^l + P_B^{\text{sat}}
Boiling curve P=PAsatPBsatPAsat(PAsatPBsat)xAgP = \dfrac{P_A^{\text{sat}}P_B^{\text{sat}}}{P_A^{\text{sat}} - (P_A^{\text{sat}} - P_B^{\text{sat}})x_A^g}
Henry’s law
★ Low pressure, dilute solution
CA=KH(T)PAC_A = K_H(T) P_A
Gibbs-Duhem Equations μi dni=0ni dμi=0\sum \mu_i \ dn_i = 0 \newline \sum n_i \ d\mu_i = 0
Colligative property μsolvent=RTln(1xA)+μsolvent\mu_{\text{solvent}} = RT \ln(1 - x_A) + \mu_{\text{solvent}}^\circ