Thermodynamic Properties and Data
Description |
Equations |
Pressure (kinetic theory) |
P=AF |
Ideal gas law |
PV=nRTPv=RT |
Quality |
q=nl+nvnv |
Fraction |
xA=fαxAα+(1−fα)xAβ |
Lever rule for intensive properties |
vtotal=vvq+vl(1−q) |
Gibbs phase rule |
F=2+c−p−r |
Mole fraction |
xi=∑jnjni |
Description |
Equations |
Keesom potential (dipole-dipole) |
Γij=−32rij6kBTμi2μj2 |
Debye potential (dipole-induced dipole) |
Γij=−rij6αiμj2 |
London dispersion potential (induced dipole-induced dipole) |
Γij=−23rij6αiαjIi1+Ij11 |
Lennard-Jones potential |
Γ=4ε[(rσ)12−(rσ)6] |
Equilibrium intermolecular distance |
r(Γmin)=r(ε)=21/6σ=1.12σ |
Description |
Equations |
Nondimensionalized distance |
“r”=σr |
Nondimensionalized temperature |
“T”=εkBT |
Nondimensionalized pressure |
“P”=εσ3P |
Nondimensionalized energy |
“E”=εU |
Nondimensionalized time |
“t”=σm/εt |
Kinetic energy and temperature |
KE=nT |
Ideal gas pair potential energy |
PE=0 |
Condensed phase interaction potential energy (with normalized energy unit of ε) |
PE=−Ninter |
Amount of interactions |
Ninter=21(# molecules)(# neighbors) |
Description |
Equations |
van der Waals EOS in terms of P |
P=v−bRT−v2a |
van der Waals EOS in terms of v |
v3−(v−bRT)v2+Pav−Pab=0 |
van der Waals parameter a |
a=6427Pc(RTc)2 |
van der Waals parameter b |
b=8PcRTc |
Molar potential energy |
ep=−va |
Pressure at zero kinetic energy |
P=−v2a |
Reduced temperature |
Tr=TcT |
Reduced pressure |
Pr=PcP |
Compressibility factor |
z=videalvreal=RTPv |
Potential energy |
ep=ureal(T,P)−uideal(T,P=0) |
Internal energy departure function |
RTcep=RTcureal−uideal |
Internal energy departure function in van der Waals EOS |
RTcep=−64Trz27Pr |
Description |
Equations |
Lee-Kesler compressibility factor |
z=z(0)+ωz(1) |
Acentric factor |
ω=−1−log10(Prsat(Tr=0.7)) |
General departure function in Lee-Kesler EOS |
dep=dep(0)+ω dep(1) |
Internal energy and enthalpy departure function |
RTcureal−uideal=RTchreal−hideal+Tr(1−z) |
System Type |
First Law of Thermodynamics |
Isolated system |
ΔU=0 |
Closed system |
ΔU=Q+W |
Open system |
dtdU=in∑n˙ihi−out∑n˙ihi+∑Qi˙+Ws˙ |
Open system in steady state |
0=in∑n˙ihi−out∑n˙ihi+∑Qi˙+Ws˙ |
Description |
Equations |
Work |
W=∫P dV |
Enthalpy |
H=U+PV |
Constant volume molar heat capacity |
cv=(∂T∂u)v |
Constant pressure molar heat capacity |
cP=(∂T∂h)P |
Relationship between molar heat capacities |
cP=cv+R |
System Type |
Second Law of Thermodynamics |
Isolated system Sgen≥0 |
ΔS=Sgen |
Closed system Sgen≥0 |
ΔS=∫TδQ+Sgen |
Open system S˙gen≥0 |
dtdS=in∑n˙isi−out∑n˙isi+∑TiQi˙+S˙gen |
Open system in steady state S˙gen≥0 |
0=in∑n˙isi−out∑n˙isi+∑TiQi˙+S˙gen |
Description |
Equations |
Ergotic hypothesis |
∣f∣=⟨f⟩ |
Equal probability postulate |
Pj=Ω1 |
Entropy |
S=kBlnΩ |
Permutability NA distinguishable particles in N sites |
Π=(N−NA)!N! |
Multiplicity NA indistinguishable particles in N sites |
Ω=NA!(N−NA)!N! |
Multiplicity NA,NB,… indistinguishable particles in N sites |
Ω=NA!NB!NC!⋯N! |
Stirling approximation |
a→∞limln(a!)=aln(a)−a |
Entropy of N sites with fraction x activated |
S=kBN[−xln(x)−(1−x)ln(1−x)] |
Description |
Equations |
Molar entropy C = constant |
s=Rln(vu3/2)+C |
Molar internal energy C = constant |
u=Cv−2/3exp(32Rs) |
Temperature |
T=(∂s∂u)v |
Pressure |
P=−(∂v∂u)s |
Fundamental property relation |
du=Tds−Pdv |
Reversible heat at constant v |
Δu=q=∫T ds |
Reversible work at constant s |
w=−∫P dv |
Description |
Equations |
Reversible process |
sgen=0 |
Irreversible process (caused by temperature gradient) |
sgen>0 |
First and Second Law Analysis
Isoenergetic process (Δu=0⟹ΔT=0) of ideal gas has similar analysis.
Description |
Equations |
Condition ★ Ideal gas |
ΔT=0 |
Internal energy change |
Δu=0 |
Enthalpy change |
Δh=0 |
First law |
Δu=q+w=0 |
Work (changing volume) |
w=−∫vRTdv=−RTln(v1v2) |
Work (changing pressure) |
w=∫PRTdP=RTln(P1P2) |
Heat |
q=−w |
Entropy change |
Δs=∫Tδq=Tq=−Tw |
Entropy change (changing volume) |
Δs=Rln(v1v2) |
Entropy change (changing concentration) |
Δs=−Rln(c1c2) |
Entropy change (changing pressure) |
Δs=−Rln(P1P2) |
Description |
Equations |
Condition ★ Ideal gas |
q=0 |
First law |
Δu=w |
Enthalpy change |
Δh=Δu+RΔT |
Work (changing volume) |
w=−∫vRTdv=−RTln(v1v2) |
Work (changing pressure) |
w=∫PRTdP=RTln(P1P2) |
Entropy change |
Δs=0 |
Description |
Equations |
Condition ★ Ideal gas |
Δv=0 |
Work |
w=0 |
Internal energy change |
Δu=∫cv dT |
First law |
q=Δu |
Entropy change |
Δs=∫Tδq=∫Tdu=∫Tcv dT |
Description |
Equations |
Condition ★ Ideal gas |
ΔP=0 |
Internal energy change |
Δu=∫cv dT |
Enthalpy change |
Δh=∫cp dT |
Work |
w=−PΔv |
Heat |
q=Δh |
Entropy change |
Δs=∫Tδq=∫Tdh=∫Tcp dT |
Description |
Equations |
Incompressible condensed phases |
v0 is constant, small |
Incompressible condensed phases at low pressure |
Δu=Δh=∫cp dT |
Incompressible condensed phases at high pressure |
Δh=∫cp dT+v0(P1−P0) |
Incompressible condensed phases |
Δs=∫TcpdT=cpln(T2T1) |
Phase change |
Δh=qΔs=Tq=TΔh |
Description |
Equations |
Maximum work of heat engine |
Wmax=Qin(1−ThTc) |
Minimum work of heat heat pump |
Wmax=Qout(1−ThTc) |
Reversible work |
Wrev=Q1(1−ThTc) |
Carnot efficiency |
η=Q1Wrev=1−ThTc |
Ideal gas entropy |
Δs(T,v)=∫TcvdT+Rln(v0v) |
Ideal gas entropy |
Δs(T,P)=∫TcpdT−Rln(P0P) |
Lost work |
Wlost=Tcsgen |
Exthalpy for multi-stream |
E˙=W˙rev=i∑sourcen˙i(hi−T0si)−i∑groundn˙i(hi∘−T0si∘) |
Exthalpy for single stream |
W˙rev=Δh−T0Δs |
Description |
Equations |
Gibbs free energy (constant T,P) |
G=H−TS |
Helmholtz free energy (constant T,V) |
F=A=U−TS |
Entropy change of universe |
ΔSuniv≥0 |
Gibbs free energy change of spontaneous process |
ΔG≤0 |
Helmholtz free energy change of spontaneous process |
ΔF≤0 |
Thermal equilibrium |
Tα=Tβ |
Mechanical equilibrium |
Pα=Pβ |
Chemical equilibrium |
gα=gβ |
Clausius-Clapeyron equation |
d(1/T)dlnPsat=−R1Δhvap(T) |
Clausius-Clapeyron equation ★ modest pressure, incompressible liquid, ideal gas, constant Δhvap |
ln(P0Psat)=−RΔhvap∘(T1−T01) |
Antoine equation |
ln(Psat)=A−C+TB |
Description |
Equations |
Partial molar properties |
xˉi=(∂ni∂x)others,nj=i |
Partial molar gibbs free energy |
gˉi=(∂ni∂G)T,P,nj=i |
Partial molar gibbs free energy |
gˉi=hˉi−Tsˉi |
Entropy |
S=−(∂T∂G)P,nj |
Volume |
V=(∂P∂G)T,nj |
Total derivative of gibbs free energy |
dG=−S dT+V dP+i∑gˉi dni |
Chemical potential |
μi=gˉi |
Chemical equilibrium |
μiα=μiβ |
Raoult’s law |
PA=xAgP=xAlPAsat |
Condensation curve |
P=(PAsat−PBsat)xAl+PBsat |
Boiling curve |
P=PAsat−(PAsat−PBsat)xAgPAsatPBsat |
Henry’s law ★ Low pressure, dilute solution |
CA=KH(T)PA |
Gibbs-Duhem Equations |
∑μi dni=0∑ni dμi=0 |
Colligative property |
μsolvent=RTln(1−xA)+μsolvent∘ |