Contents

CHEM E 310 Material and Energy Balances

Units and Process Variables

Force

Description Equations
Units of force $\begin{aligned}1 \ \mathrm{N} &= 1 \ \mathrm{kg \cdot m/s^2} \cr 1 \ \mathrm{lb_f} &= 32.174 \ \mathrm{lb_m \cdot ft/s^2}\end{aligned}$
Weight $W = mg$
Gravitational acceleration $\begin{aligned}g &= 9.8066 \ \mathrm{m/s^2} \cr &= 32.174 \ \mathrm{ft/s^2}\end{aligned}$

Mass, volume and flow rate

Description Equations
Mass flow rate $\dot{m} = \dfrac{dm}{dt}$
Volumetric flow rate $\dot{V} = \dfrac{dV}{dt}$
Molar flow rate $\dot{n} = \dfrac{dn}{dt}$
Density $\rho = \dfrac{m}{V} = \dfrac{\dot{m}}{\dot{V}}$
Specific volume $v = \dfrac{V}{m} = \dfrac{1}{\rho}$
Molar volume $V_{\mathrm{m}} = \dfrac{V}{n} = \dfrac{M}{\rho}$
Specific gravity $\mathrm{SG} = \dfrac{\rho}{\rho_{\mathrm{ref}}}$

Chemical composition

Description Equations
Mole and molecular wieght $n = \dfrac{m}{M}$
Mass fraction $x_A = \dfrac{m_A}{m}$
Mole fraction $y_A = \dfrac{n_A}{n}$
Scaling factor of percent (%),
parts per million (ppm),
parts per billion (ppb)
$\times 100\% \newline \times 10^6 \ \mathrm{ppm} \newline \times 10^9 \ \mathrm{ppb}$
Average molecular weight $\overline{M} = \dfrac{\sum m_i}{\sum n_i} = \sum y_i M_i = \left(\sum\dfrac{x_1}{M_i}\right)^{-1}$
Mass concentration $\rho_A = \dfrac{m_A}{V}$
Molar concentration $c_A = \dfrac{n_A}{V}$
Molarity and molar $1 \ \mathrm{M} = 1 \ \mathrm{mol}/\mathrm{L}$

Pressure

Description Equations
Pressure $P = \dfrac{F}{A}$
Hydrostatic pressure $P = P_0 + \rho gh$
Hydrostatic head $P = \rho gP_h$
Relationship between pressures $P_{\text{abs}} = P_{\text{atm}} + P_{\text{gauge}}$
General manometer $P_1 + \rho_1 g d_1 = P_2 + \rho_2 g d_a + \rho_m g h$
Differential manometer $P_1 - P_2 = (\rho_m - \rho)gh$
Manometer for gas $P_1 - P_2 = \rho_m gh = P_h$
SCFM (standard cubic feet per minute) and ACFM (actual cubic feet per minute) $\dot{V_{\text{a}}} = \dot{V_{\text{s}}}\dfrac{P_{\text{s}}}{P_{\text{a}}} \dfrac{T_{\text{a}}}{T_{\text{s}}} \ (\text{ideal gas})$
Standard condition of gases natural gas - $59 ^\circ\mathrm{F}, 1 \ \mathrm{atm}$
other gas - $0 ^\circ\mathrm{C}, 1 \ \mathrm{atm}$

Temperature

Description Equations
Conversion of temperature $T(\mathrm{K}) = T(\mathrm{^\circ C}) + 273.15 \newline T(\mathrm{^\circ R}) = T(\mathrm{^\circ F}) + 459.67 \newline T(\mathrm{^\circ R}) = 1.8 T(\mathrm{K}) \newline T(\mathrm{^\circ F}) = 1.8 T(\mathrm{^\circ C}) + 32$
Conversion of temperature intervals $1 ^\circ\mathrm{C} = 1.8 ^\circ\mathrm{F} \newline 1 ^\circ\mathrm{R} = 1.8 \ \mathrm{K} \newline 1 ^\circ\mathrm{F} = 1 ^\circ\mathrm{R} \newline 1 ^\circ\mathrm{C} = 1.8 \ \mathrm{K}$

Fundamentals of Material Balances

Concepts

Description Equations
Balance equation Accumulation = Input - Output
+ Generation - Consumption
Fractional excess $\text{Fractional excess} = \dfrac{n_{\mathrm{fed}} - n_{\mathrm{stoich}}}{n_{\mathrm{stoich}}}$
Fractional conversion $\text{Fractional conversion} = \dfrac{n_{\mathrm{reacted}}}{n_{\mathrm{fed}}}$
Fractional completion of limiting reactant $\text{Fractional completion} = \dfrac{n_{\mathrm{reacted}}}{n_{\mathrm{fed}}} = \dfrac{-\nu\xi}{n_{\mathrm{fed}}}$
Extent of reaction $\xi = \dfrac{n_i - n_{i0}}{\nu_i}$
Extent of reaction in multiple reactions $n_i = n_{i0}\sum\limits_j\nu_{ij}\xi_{ij}$
Yield
theoretical = complete rxn, no side rxn
$\text{Yield} = \dfrac{n_\text{actual}}{n_\text{theoretical}} \times 100%$
Selectivity $\text{Selectivity} = \dfrac{n_\text{desired}}{n_\text{undesired}}$
Fractional excess of air (oxygen) $\text{Fractional excess air} = \dfrac{n_{\mathrm{fed}} - n_{\mathrm{stoich}}}{n_{\mathrm{stoich}}}$
Quality of steam $\text{Quality of steam} = \dfrac{m_{\text{vapor}}}{m_{\text{total}}}$

Degree of freedom analysis

Description Equations
Nonreactive process $\small\begin{aligned} & \text{No. unknown variables} \cr - & \text{No. independent material balance species} \cr - & \text{No. other relations (process specifications)} \cr \hline & \text{No. degrees of freedom}\end{aligned}$
Reactive process
Molecular species balance method
1 reaction system
$\small\begin{aligned} & \text{No. unknown variables} \cr + & \text{No. independent reaction} \cr - & \text{No. independent molecular species} \cr - & \text{No. other relations} \cr \hline & \text{No. degrees of freedom}\end{aligned}$
Reactive process
Atomic species balance method
>1 reaction system
$\small\begin{aligned} & \text{No. unknown variables} \cr - & \text{No. independent reactive atomic species} \cr - & \text{No. independent nonreactive molecular species} \cr - & \text{No. other relations} \cr \hline & \text{No. degrees of freedom}\end{aligned}$
Reactive process
Extent of reaction method
equilibrium problem
$\small\begin{aligned} & \text{No. unknown variables} \cr + & \text{No. independent reaction} \cr - & \text{No. independent reactive species} \cr - & \text{No. independent nonreactive species} \cr - & \text{No. other relations} \cr \hline & \text{No. degrees of freedom}\end{aligned}$

Single-Phase System

Condensed phases

Description Equations
Estimations of density of liquid mixtures
1. Experimental data
2. Estimation formula
★ Volume addativity
$\dfrac{1}{\bar{\rho}} = \sum\limits_{i=1}^n \dfrac{x_i}{\rho_i} \newline \bar{\rho} = \sum\limits_{i=1}^n x_i\rho_1$
Incompressible approximation $\partial\hat{V} = 0 \newline \left(\frac{\partial\hat{V}}{\partial P}\right)_T = 0 \newline \left(\frac{\partial\hat{V}}{\partial T}\right)_P = 0$
Volume expansivity $\beta = \dfrac{1}{\hat{V}} \left(\dfrac{\partial\hat{V}}{\partial T}\right)_P$
Isothermal compressibility $K = -\dfrac{1}{\hat{V}} \left(\dfrac{\partial\hat{V}}{\partial P}\right)_T$
Volume with change in $T, P$ $\ln\left(\dfrac{\hat{V}_2}{\hat{V}_1}\right) = \beta(T_2 - T_1) - K(P_2 - P_1)$

Ideal gas of single component

Description Equations
Specific molar volume $\hat{V} = \dfrac{V}{n}$
Ideal gas equation of state
★ $\footnotesize T > 0\mathrm{^\circ C}, P < 1 \ \mathrm{atm}$
$PV = nRT \newline P\hat{V} = RT$
Standard conditions and actual conditions $\dfrac{PV}{P_{\text{s}}\hat{V_{\text{s}}}} = n\dfrac{T}{T_{\text{s}}}$
SCFM vs. ACFM
★ Ideal gas
$\dot{V_{\text{a}}} = \dot{V_{\text{s}}}\dfrac{P_{\text{s}}}{P_{\text{a}}} \dfrac{T_{\text{a}}}{T_{\text{s}}}$
Ideal gas condition $T > 0 \mathrm{^\circ C} \newline P < 1 \ \mathrm{atm} \newline \footnotesize\hat{V}_{\text{ideal}} = \dfrac{RT}{P} \newline \begin{cases} >5 \ \mathrm{L/mol}, 80 \ \mathrm{ft^3/lbmol} & \text{diatomic} \cr >20 \ \mathrm{L/mol}, 320 \ \mathrm{ft^3/lbmol} & \text{other} \end{cases}$

Ideal gas of multiple components

Description Equations
Partial pressure $P_i = y_i P$
Dalton’s law $\sum P_i = P$
Pure-component volume $V_i = y_i V$
Amagat’s law $\sum V_i = V$
Volume fraction of ideal gas $y_i = \dfrac{V_i}{V}$

van der Waals equation of state

Description Equations
van der Waals equation of state $P = \dfrac{RT}{\hat{V} - b} - \dfrac{a}{\hat{V}^2}$
Constant $a = \dfrac{27R^2T_c^2}{64P_c}$
Constant $b = \dfrac{RT_c}{8P_c}$
Significance of 3 real roots $\hat{V}_{\text{highest}} = \hat{V}_{\text{sat, vapor}} \newline \hat{V}_{\text{lowest}} = \hat{V}_{\text{sat, liquid}} \newline \hat{V}_{\text{middle}} = \small \text{no significance}$
Significance of real and imaginary roots $\hat{V}_{\text{real}} = \hat{V}_{\text{gas}} \newline \hat{V}_{\text{imaginary}} = \small\text{no significance}$

Virial equation of state

Description Equations
Virial equation of state $\dfrac{P\hat{V}}{RT} = 1 + \dfrac{B}{\hat{V}} + \dfrac{C}{\hat{V}^2} + \dfrac{D}{\hat{V}^3} + \cdots$
First order appox. of virial equation of state $\dfrac{P\hat{V}}{RT} = 1 + \dfrac{BP}{RT}$
Reduced temperature $T_r = \dfrac{T}{T_c}$
Reduced pressure $P_r = \dfrac{P}{P_c}$

Using virial equation of state

  1. Lookup $T_c, P_c, \omega$
  2. Calculate $T_r$
  3. Estimate B by
    1. $B_0 = 0.083 - \dfrac{0.422}{T_r^{1.6}}$
    2. $B_1 = 0.139 - \dfrac{0.172}{T_r^{4.2}}$
    3. $B = \dfrac{RT_c}{P_c}(B_0 + \omega B_1)$
  4. Substitute known values into first order approximation

Redlick-Kwong (RK) equation of state

Description Equations
SRK equation of state $P = \dfrac{RT}{\hat{V} - b} - \dfrac{a}{T^{0.5}\hat{V}(\hat{V}+b)}$
Constants $a = 0.4274 R^2 T_c^{2.5} / P_c \newline b = 0.08664 RT_c / P_c$

Soave-Redlick-Kwong (SRK) equation of state

Description Equations
SRK equation of state $P = \dfrac{RT}{\hat{V} - b} - \dfrac{\alpha a}{\hat{V}(\hat{V}+b)}$
Constants $a = 0.4274 (RT_c)^2 / P_c \newline b = 0.08664 RT_c / P_c \newline m = 0.48508 + 1.55171\omega - 0.1561\omega^2 \newline T_r = T/T_c \newline \alpha = [1 + m(1-\sqrt{T_r})]^2$

Using SRK equation of state

  1. Lookup $T_c, P_c, \omega$
  2. Calculate $a, b, m$
  3. Determine the known
    1. If known $T, \hat{V}$
      1. Calculate $T_r, \alpha$
      2. Solve from equation directly for $P$
    2. If known $T, P$
      1. Use equation and all knowns
      2. Use python to solve for $\hat{V}$
    3. If known $P, \hat{V}$
      1. Use equation, $T_r, \alpha$, and all knowns
      2. Use python to solve for $T$

Compressibility-factor equation of state

Description Equations
Compressibility
(Law of corresponding state)
$z = \dfrac{P\hat{V}}{RT}$
Compressibility-factor equation of state $P\hat{V} = zRT$
Reduced temperature $T_r = \dfrac{T}{T_c}$
Reduced pressure $P_r = \dfrac{P}{P_c}$
Ideal reduced volume $\hat{V}_r^{\text{ideal}} = \dfrac{P_c\hat{V}}{RT_c}$
Kay’s rule of nonideal gas mixtures
Pseudocritical temperature
$T_c' = \sum y_i T_{ci}$
Pseudocritical pressure $P_c' = \sum y_i P_{ci}$
Pseudoreduced temperature $T_r' = \dfrac{T}{T_c'}$
Pseudoreduced pressure $P_r' = \dfrac{P}{P_c'}$
Ideal pseudoreduced volume $\hat{V}_r^{\text{ideal}} = \dfrac{P_c'\hat{V}}{RT_c'}$

Using compressibility-factor equation of state

  1. Lookup $T_c, P_c$
  2. If gas is $\ce{H2/He}$, adjust critical constant by Newton’s correlation
    1. $T_c^a = T_c + 8 \ \mathrm{K}$
    2. $P_c^a = P_c + 8 \ \mathrm{atm}$
  3. Calculate reduced value of two known variables from $T_r, P_r, V_r^{\text{ideal}}$
  4. Use compressibility chart to determine $z$
  5. Solve for unknowns from equation

Multi-Phase System

Vapor pressure estimations

Description Equations
Clapeyron equation $\dfrac{dP^*}{dt} = \dfrac{\Delta \hat{H}_\text{v}}{T}\dfrac{1}{\hat{V_g} - \hat{V_l}}$
Clapeyron equation $\dfrac{d(\ln P^*)}{d(1/T)} = -\dfrac{\Delta \hat{H}_\text{v}}{R}$
Clausius-Clapeyron equation $\ln P^* = -\dfrac{\Delta \hat{H}_\text{v}}{RT} + B$
Clausius-Clapeyron equation $\ln \left(\dfrac{P_2}{P_1}\right) = -\dfrac{\Delta \hat{H}_\text{v}}{nR} \left(\dfrac{1}{T_2}-\dfrac{1}{T_1}\right)$
Antoine equation
(Vapor pressure of species)
$\log_{10}P^* = A - \dfrac{B}{T+C}$

Vapor liquid equilibrium (VLE) calculations

Description Equations
Gibbs phase rule $\mathcal{F} = 2 + c - \Pi - r$
Total vapor pressure of immiscible liquids $P = \sum P_i^*$
Raoult’s law
★ Ideal gas and solution, non-dilute $x_A$
$P_A = y_AP = x_AP_A^*(T)$
Henry’s law
★ Ideal gas and solution, dilute $x_A$
$P_A = y_AP = x_AH_A(T)$
VLE of real gases
$\varphi$ - fugacity coefficient
$\gamma$ - activity coefficient
$y_i\varphi_i P = x_i\gamma_i P^*$
Partition coefficient of ideal gas (Raoult’s law)
★ Ideal gas: $\footnotesize\varphi = 1, \gamma = 1$
$K_i = \dfrac{y_i}{x_i} = \dfrac{\gamma_i P_{i}^{*}}{\varphi_i P} = \dfrac{P_{i}^{*}}{P}$
Partition coefficient of ideal gas (Henry’s law)
★ Ideal gas, Henry’s law assumptions
$K_i = \dfrac{H_i}{P}$

Saturation and humidity

Description Equations
Relative saturation/humidity $s_r = \dfrac{P_A}{P_A^*(T)}\times 100%$
Molal saturation/humidity $s_m = \dfrac{P_A}{P-P_A}$
Absolute saturation/humidity $s_a = \dfrac{P_AM_A}{(P-P_A)M_A}$
Percent saturation/humidity $s_p = \dfrac{s_m}{s_m^*}\times 100 \% \newline = \dfrac{P_A/(P-P_A)}{P_A^*/(P-P_A^*)}\times 100 \%$

Bubble and dew point

Description Equations
Superheated vapor $P_A = y_AP < P_A^*(T)$
Saturated vapor and dew point $P_A = y_AP = P_A^*(T_{\text{dp}})$
Degree of superheat $T - T_{\text{dp}}$
Bubble point temperature of mixture at constant $P$ $P = \sum x_iP_i^*(T_{\text{bp}})$
Bubble point pressure of mixture at constant $T$ $P_{\text{bp}} = \sum x_iP_i^*(T)$
Dew point temperature of mixture at constant $P$ $\sum\dfrac{y_i}{P_i^*(T_{\text{dp}})}= 1$
Dew point pressure of mixture at constant $T$ $P_{\text{dp}} = \left[ \sum\dfrac{y_i}{P_i^*(T)} \right]^{-1}$

Fundamentals of Energy Balances

Closed system balance

Description Equations
Kinetic energy $E_k = \frac{1}{2}mv^2$
Potential energy $E_p = mgz$
Internal energy $U(T, V)$
Total energy $E = U + E_k + E_p$
Work $W = P\Delta V$
Closed system balance $\Delta U + \Delta E_k + \Delta E_p = Q+W$
$\Delta E_k = 0$ Not accelerating
$\Delta E_p = 0$ Not changing height
$\Delta U = 0$ No phase change, chemical reaction, temperature change
$Q = 0$ Insulated system; adiabatic; temperature of system and surrounding the same
$W = 0$ No moving parts, radiation, electric current, flow

Open system balance

Description Equations
Work $\dot{W} = \dot{W}_s + \dot{W}_{fl}$
Enthalpy $H = U+PV$
Specific properties $\hat{V} = \frac{V}{m}, \hat{V} = \frac{V}{n}$
Open system balance $\Delta \dot{H} + \Delta \dot{E}_k + \Delta \dot{E}_p = \dot{Q} + \dot{W}_s$
$\Delta E_k = 0$ No acceleration; linear velocity of all streams the same
$\Delta E_p = 0$ Stream entering and leaving at same height
$\dot{Q} = 0$ Insulated; adiabatic; system and surrounding temperature the same
$\dot{W}_s = 0$ No moving parts
Friction loss $\hat{F} = \Delta\hat{U} - \dfrac{\dot{Q}}{\dot{m}}$
Mechanical energy balance $\dfrac{\Delta P}{\rho} + \dfrac{\Delta v^2}{2} + g\Delta z + \hat{F} = \dfrac{\dot{W}_s}{\dot{m}}$
Bernoulli equation
★ $\footnotesize \hat{F}=0, \dot{W}_s=0$
$\dfrac{\Delta P}{\rho} + \dfrac{\Delta v^2}{2} + g\Delta z = 0$

Energy Balances in Nonreactive Processes

Isothermal process

Description Equations
Internal energy $\Delta U = \begin{cases} = 0 & \text{(ideal gas)} \cr \approx 0 & \text{(real gas) }P<10 \ \mathrm{bar} \cr \not= 0 & \text{(real gas) }P>10 \ \mathrm{bar} \cr \approx 0 & \text{(condensed phases)} \end{cases}$
Enthalpy $\Delta H = \begin{cases} = 0 & \text{(ideal gas)} \cr \approx 0 & \text{(real gas) }P<10 \ \mathrm{bar} \cr \not= 0 & \text{(real gas) }P>10 \ \mathrm{bar} \cr \approx \hat{V}\Delta P & \text{(condensed phases)} \end{cases}$

Non-isothermal process

Use (hypothetical) process paths to guide the use of equations.

Description Equations
Heat capacity at constant volume $C_V(T) = \left(\frac{\partial\hat{U}}{\partial T}\right)_V$
Heat capacity at constant pressure $C_P(T) = \left(\frac{\partial\hat{H}}{\partial T}\right)_P$
Heat capacity correlation $C_P(T) = a+bT+cT^2+dT^3$
Heat capacity relation of condensed phases $C_P \approx C_V$
Heat capacity relation of ideal gas $C_P = C_V+R$
Heat capacity of monoatmoic ideal gases $C_V = \frac{3}{2}R, C_P = \frac{5}{2}R$
Heat capacity of polyatomic ideal gases $C_V = \frac{5}{2}R, C_P = \frac{7}{2}R$
Kopp’s rule
Heat capacity of compound (table B.10)
$C_{P, \text{compound}} = \sum \nu_i C_{P, i}$
Kopp’s rule
Heat capacity of mixture
$C_{P, \text{mix}} = \sum y_i C_{P, i}(T)$
Change in internal energy at changing temperature $\Delta\hat{U} = \int_{T_1}^{T_2}C_V(T) \ dT$
Change in enthalpy at changing temperature $\Delta\hat{H} = \int_{T_1}^{T_2}C_P(T) \ dT$

Phase change process

Description Equations
Latent heat approximation of condensed phases $\Delta U \approx \Delta H$
Latent heat approximation of ideal gas $\Delta U_{\text{v}} \approx \Delta H_{\text{v}} - RT$

Energy Balances in Reactive Processes

Heat of Reactions

Description Equations
Heat of reaction of batch process $\Delta H = \xi \Delta H_{\text{rxn}}(T_1, P_1)$
Heat of reaction of continuous process $\Delta \dot{H} = \xi \Delta \dot{H}_{\text{rxn}}(T_1, P_1)$
Endothermic reaction $\Delta H_{\text{rxn}} > 0$
Exothermic reaction $\Delta H_{\text{rxn}} < 0$
Hess’s law and heat of formation
“product minus reactant”
$\Delta H_{\text{rxn}}^\circ = \sum\limits_i \nu_i \Delta \hat{H}_{\text{f}, i}^\circ$
Heat of formation conventions $\Delta \hat{H}_{\text{f}}^\circ(\text{elemental}) = 0$
Hess’s law and heat of combustion
“reactant minus product”
$\Delta H_{\text{rxn}}^\circ = -\sum\limits_i \nu_i \Delta \hat{H}_{\text{c}, i}^\circ$
Heat of combustion conventions $\Delta \hat{H}_{\text{c}}^\circ(\mathrm{O_2}) = 0 \newline \Delta \hat{H}_{\text{c}}^\circ(\text{combustion product}) = 0$
combustion product: $\small\ce{CO2, H2O, SO2, N2}$
Internal energy of reaction
(product $\nu>0$; reactant $\nu<0$)
$\Delta U_{\text{rxn}} = \Delta H_{\text{rxn}} - RT \sum\limits_{\text{gas}}\nu_i$

Enthalpy change of reactions

/cheme/cheme-310-reaction-process-path.png
Reaction process paths. (Elementary Principles of Chemical Processes 4e by Felder et al. p507.)
Description Equations
Enthalpy change of heat of reaction method $\Delta \dot{H} = \sum\limits_{\text{rxn}} \xi \Delta H_{\text{rxn}}^\circ + \sum \dot{n}_{\text{out}}\hat{H}_{\text{out}} - \sum \dot{n}_{\text{in}}\hat{H}_{\text{in}}$
Enthalpy change of heat of formation method $\Delta \dot{H} = \sum \dot{n}_{\text{out}}\hat{H}_{\text{out}} - \sum \dot{n}_{\text{in}}\hat{H}_{\text{in}}$