MATH 126 Calculus III

Contents
Description Equations
Distance formula d=(x1x2)2+(y1y2)2+(z1z2)2d = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}
Equation of a sphere
centered at (a,b,c)(a,b,c)
(xa)2+(yb)2+(zc)2=r2(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
Norm/length/magnitude of vectors a=a12+a22+a32\lvert \mathbf{a} \rvert = \sqrt{a_1^2 + a_2^2 + a_3^2}
Vector addition and subtraction a±b=a1±b1,a2±b2,a3±b3\mathbf{a} \pm \mathbf{b} = \langle a_1 \pm b_1, a_2 \pm b_2, a_3 \pm b_3 \rangle
Vector scalar multiplication ca=ca1,ca2,ca3c\mathbf{a} = \langle ca_1, ca_2, ca_3 \rangle
Properties of vectors a+b=b+aa+(b+c)=(a+b)+ca+0=aa+(a)=0c(a+b)=ca+cb(c+d)a=ca+da(cd)a=c(da)1a=a\mathbf{a}+\mathbf{b} = \mathbf{b}+\mathbf{a} \newline \mathbf{a}+(\mathbf{b}+\mathbf{c}) = (\mathbf{a}+\mathbf{b})+\mathbf{c} \newline \mathbf{a}+\mathbf{0}=\mathbf{a} \newline \mathbf{a}+(-\mathbf{a}) = \mathbf{0} \newline c(\mathbf{a}+\mathbf{b}) = c\mathbf{a}+c\mathbf{b} \newline (c+d)\mathbf{a} = c\mathbf{a}+d\mathbf{a} \newline (cd)\mathbf{a} = c(d\mathbf{a}) \newline 1\mathbf{a}=\mathbf{a}
Standard basis vectors i=1,0,0j=0,1,0k=0,0,1\mathbf{i} = \langle 1,0,0 \rangle \newline \mathbf{j} = \langle 0,1,0 \rangle \newline \mathbf{k} = \langle 0,0,1 \rangle
Description Equations
Dot product ab=a1b1+a2b2+a3b3\mathbf{a}\cdot\mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3
Properties of dot product aa=a2ab=baa(b+c)=ab+ac(ca)b=c(ab)=a(cb)0a=0\mathbf{a}\cdot\mathbf{a}=\lvert\mathbf{a}\rvert^2 \newline \mathbf{a}\cdot\mathbf{b}=\mathbf{b}\cdot\mathbf{a} \newline \mathbf{a}\cdot(\mathbf{b}+\mathbf{c}) = \mathbf{a}\cdot\mathbf{b} + \mathbf{a}\cdot\mathbf{c} \newline (c\mathbf{a})\cdot\mathbf{b}=c(\mathbf{a}\cdot\mathbf{b})=\mathbf{a}\cdot(c\mathbf{b}) \newline \mathbf{0}\cdot\mathbf{a} = \mathbf{0}
Dot product and angle between vectors ab=abcosθcosθ=abab\mathbf{a}\cdot\mathbf{b} = \lvert\mathbf{a}\rvert\lvert\mathbf{b}\rvert\cos\theta \newline \cos\theta = \dfrac{\mathbf{a}\cdot\mathbf{b}}{\lvert\mathbf{a}\rvert\lvert\mathbf{b}\rvert}
Dot product to check orthogonal vectors ab=0\mathbf{a}\cdot\mathbf{b} = 0
Direction angles and direction cosines cosα=aiai=a1acosβ=a2acosγ=a3a\cos\alpha = \dfrac{\mathbf{a}\cdot\mathbf{i}}{\lvert\mathbf{a}\rvert\lvert\mathbf{i}\rvert} = \dfrac{a_1}{\lvert\mathbf{a}\rvert} \newline \cos\beta = \dfrac{a_2}{\lvert\mathbf{a}\rvert} \newline \cos\gamma = \dfrac{a_3}{\lvert\mathbf{a}\rvert}
Unit vector and direction cosines aa=cosα,cosβ,cosγ\dfrac{\mathbf{a}}{\lvert\mathbf{a}\rvert} = \langle \cos\alpha, \cos\beta, \cos\gamma \rangle
Scalar projection of b\mathbf{b} onto a\mathbf{a} compab=aba\mathrm{comp}_{\mathbf{a}}\mathbf{b} = \dfrac{\mathbf{a}\cdot\mathbf{b}}{\lvert\mathbf{a}\rvert}
Vector projection of b\mathbf{b} onto a\mathbf{a} projab=abaaa=aba2a\mathrm{proj}_{\mathbf{a}}\mathbf{b} = \dfrac{\mathbf{a}\cdot\mathbf{b}}{\lvert\mathbf{a}\rvert}\dfrac{\mathbf{a}}{\lvert\mathbf{a}\rvert} = \dfrac{\mathbf{a}\cdot\mathbf{b}}{\lvert\mathbf{a}\rvert^2}\mathbf{a}
Description Equations
Cross product a×b=a1a2a3b1b2b3c1c2c3=a2b3a3b2,a3b1a1b3,a1b2a2b1\mathbf{a}\times\mathbf{b} = \begin{vmatrix} a_1 & a_2 & a_3 \cr b_1 & b_2 & b_3 \cr c_1 & c_2 & c_3 \end{vmatrix} = \newline \langle a_2b_3-a_3b_2, a_3b_1-a_1b_3, a_1b_2-a_2b_1\rangle
Cross product to generate orthogonal vectors a×b\mathbf{a}\times\mathbf{b} is orthogonal to both a\mathbf{a} and b\mathbf{b}
Cross product and angle between vectors a×b=absinθ\lvert\mathbf{a}\times\mathbf{b}\rvert = \lvert\mathbf{a}\rvert\lvert\mathbf{b}\rvert \sin\theta
Cross product to check parallel vectors a×b=0\mathbf{a}\times\mathbf{b} = \mathbf{0}
Cross product as the area of parallelogram A=a×bA = \lvert\mathbf{a}\times\mathbf{b}\rvert
Cross products of standard basis vectors i×j=kj×k=ik×i=j\mathbf{i}\times\mathbf{j} = \mathbf{k} \newline \mathbf{j}\times\mathbf{k} = \mathbf{i} \newline \mathbf{k}\times\mathbf{i} = \mathbf{j}
Properties of cross product a×b=b×a(ca)×b=c(a×b)=a×(cb)a×(b+c)=a×b+a×c(a+b)×c=a×c+b×ca(b×c)=(a×b)ca×(b×c)=(ac)b(ab)c\mathbf{a}\times\mathbf{b} = -\mathbf{b}\times\mathbf{a} \newline (c\mathbf{a})\times\mathbf{b} = c(\mathbf{a}\times\mathbf{b}) = \mathbf{a}\times(c\mathbf{b}) \newline \mathbf{a}\times(\mathbf{b}+\mathbf{c}) = \mathbf{a}\times\mathbf{b}+\mathbf{a}\times\mathbf{c} \newline (\mathbf{a}+\mathbf{b})\times\mathbf{c} = \mathbf{a}\times\mathbf{c} + \mathbf{b}\times\mathbf{c} \newline \mathbf{a}\cdot(\mathbf{b}\times\mathbf{c}) = (\mathbf{a}\times\mathbf{b})\cdot\mathbf{c} \newline \mathbf{a}\times(\mathbf{b}\times\mathbf{c}) = (\mathbf{a}\cdot\mathbf{c})\mathbf{b} - (\mathbf{a}\cdot\mathbf{b})\mathbf{c}
Scalar triple product as volume of parallelepiped V=a(b×c)V = \lvert \mathbf{a}\cdot(\mathbf{b}\times\mathbf{c}) \rvert
Scalar triple product to check three coplanar vectors V=a(b×c)=0V=\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})=0
Description Equations
Vector equation of a line r=r0+tv\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}
Parametric equations of a line
through (x0,y0,z0)(x_0, y_0, z_0), in direction of a,b,c\langle a, b, c \rangle
x=x0+aty=y0+btz=z0+ctx=x_0+at \newline y = y_0+bt \newline z=z_0+ct
Symmetric equation of a line xx0a=yy0b=zz0c\dfrac{x-x_0}{a} = \dfrac{y-y_0}{b} = \dfrac{z-z_0}{c}
Description Equations
Vector equation of a line segment r(t)=(1t)r0+tr1t[0,1]\mathbf{r}(t) = (1-t)\mathbf{r}_0+t\mathbf{r}_1 \newline t\in[0,1]
Vector equation of a plane n(rr0)=0nr=nr0\mathbf{n}\cdot(\mathbf{r}-\mathbf{r}_0) = 0 \newline \mathbf{n}\cdot\mathbf{r} = \mathbf{n}\cdot\mathbf{r}_0
Scalar equation of a plane
through (x0,y0,z0)(x_0, y_0, z_0), normal vector a,b,c\langle a,b,c \rangle
a(xx0)+b(yy0)+c(zz0)=0a(x-x_0)+b(y-y_0)+c(z-z_0)=0
Linear equation of a plane ax+by+cz+d=0ax+by+cz+d=0
Distance from a point to a plane D=ax1+by1+cz1+da2+b2+c2D = \dfrac{\lvert ax_1+by_1+cz_1+d \rvert}{\sqrt{a^2+b^2+c^2}}
Description Equations
Ellipsoid x2a2+y2b2+z2c2=1\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1
Cone z2c2=x2a2+y2b2\dfrac{z^2}{c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}
Elliptic paraboloid zc=x2a2+y2b2\dfrac{z}{c}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}
Hyperbolic paraboloid zc=x2a2y2b2\dfrac{z}{c}=\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}
Hyperboloid of one sheet x2a2+y2b2z2c2=1\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}-\dfrac{z^2}{c^2}=1
Hyperboloid of two sheets x2a2y2b2+z2c2=1-\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1
Description Equations
Vector-valued function r(t)=f(t),g(t),h(t)\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle
Limit of a vector function limtar(t)=limtaf(t),limtag(t),limtah(t)\lim\limits_{t\to a}\mathbf{r}(t) = \langle \lim\limits_{t\to a}f(t), \lim\limits_{t\to a}g(t), \lim\limits_{t\to a}h(t) \rangle
Continuity of vector function limtar(t)=r(t)\lim\limits_{t\to a}\mathbf{r}(t) = \mathbf{r}(t)
Parametric equation of space curves x=f(t)y=g(t)z=h(t)x = f(t) \newline y = g(t) \newline z = h(t)
Derivative of vector function r(t)=limh0r(t+h)r(t)h\mathbf{r}'(t) = \lim\limits_{h\to 0}\dfrac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}
Derivative of vector function r(t)=f(t),g(t),h(t)\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle
Differentiation rules [u(t)+v(t)]=u(t)+v(t)[\mathbf{u}(t)+\mathbf{v}(t)]' = \mathbf{u}'(t) + \mathbf{v}'(t)\newline [cu(t)]=cu(t)[c\mathbf{u}(t)]' = c\mathbf{u}'(t)\newline [f(t)u(t)]=f(t)u(t)+f(t)u(t)[f(t)\mathbf{u}(t)]' = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)\newline [u(t)v(t)]=u(t)v(t)+u(t)v(t)[\mathbf{u}(t)\cdot\mathbf{v}(t)]' = \mathbf{u}'(t)\cdot\mathbf{v}(t) + \mathbf{u}(t)\cdot\mathbf{v}'(t)\newline [u(t)×v(t)]=u(t)×v(t)+u(t)×v(t)[\mathbf{u}(t)\times\mathbf{v}(t)]' = \mathbf{u}'(t)\times\mathbf{v}(t) + \mathbf{u}(t)\times\mathbf{v}'(t)\newline [u(f(t))]=f(t)u(f(t))[\mathbf{u}(f(t))]' = f'(t)\mathbf{u}'(f(t))
Definite integral of vector function abr(t) dt=abf(t) dt,abg(t) dt,abh(t) dt\int_a^b \mathbf{r}(t) \ dt \newline = \langle \int_a^b f(t) \ dt, \int_a^b g(t) \ dt, \int_a^b h(t) \ dt \rangle
Position vector r(t)\mathbf{r}(t)
Tangent (velocity) vector r(t)\mathbf{r}'(t)
Unit tangent vector T(t)=r(t)r(t)\mathbf{T}(t) = \dfrac{\mathbf{r}'(t)}{\lvert\mathbf{r}'(t)\rvert}
Description Equations
Length of a curve L=abr(t) dt=ab[f(t)]2+[g(t)]2+[h(t)]2 dt\begin{aligned}L &= \textstyle\int_a^b \lvert\mathrm{r}'(t)\rvert \ dt \cr &= \textstyle\int_a^b \sqrt{[f(t)]^2+[g(t)]^2+[h(t)]^2} \ dt\end{aligned}
Arc length function s(t)=atr(u) du=at[f(u)]2+[g(u)]2+[h(u)]2 du\begin{aligned}s(t) &= \textstyle\int_a^t \lvert\mathrm{r}'(u)\rvert \ du \cr &= \textstyle\int_a^t \sqrt{[f(u)]^2+[g(u)]^2+[h(u)]^2} \ du\end{aligned}
Rate of change in arc length and the tangent vector dsdt=r(t)\dfrac{ds}{dt} = \lvert \mathbf{r}'(t) \rvert
Curvature κ(t)=dTds=T(t)r(t)=r(t)×r(t)r(t)3\kappa(t) = \bigg\lvert\dfrac{d\mathbf{T}}{ds}\bigg\rvert = \dfrac{\lvert\mathbf{T}'(t)\rvert}{\lvert\mathbf{r}'(t)\rvert} = \dfrac{\lvert\mathbf{r}'(t)\times\mathbf{r}''(t)\rvert}{\lvert\mathbf{r}'(t)\rvert^3}
Curvature in terms of function κ(x)=f(x)[1+(f(x))2]3/2\kappa(x) = \dfrac{\lvert f''(x)\rvert}{[1+(f'(x))^2]^{3/2}}
Unit normal vector N(t)=T(t)T(t)\mathbf{N}(t) = \dfrac{\mathbf{T}'(t)}{\lvert\mathbf{T}'(t)\rvert}
Binormal vector B(t)=T(t)×N(t)\mathbf{B}(t) = \mathbf{T}(t)\times\mathbf{N}(t)
Radius of osculating circle r=1κr = \frac{1}{\kappa}
Description Equations
Position vector r(t)\mathbf{r}(t)
Tangent (velocity) vector v(t)=r(t)\mathbf{v}(t) = \mathbf{r}'(t)
Acceleration vector a(t)=v(t)\mathbf{a}(t) = \mathbf{v}'(t)
Tangential and normal components of acceleration a(t)=vT+κv2N\mathbf{a}(t) = v'\mathbf{T}+\kappa v^2\mathbf{N}
Description Equations
Functions of two variables f(x,y)(x,y)Dz=f(x,y){f(x,y) \vert (x, y) \in D} \newline z = f(x,y)
Level curves f(x,y)=kf(x,y) = k
Function of three variables f(x,y,z)(x,y,z)E{f(x,y,z) \vert (x, y, z) \in E}
Level surfaces f(x,y,z)=kf(x,y,z)=k
Function of nn variables f(x)=cxf(\mathbf{x}) = \mathbf{c}\cdot\mathbf{x}
Interpretation of input of functions of several variables 1. nn real variables x1,x2,,xnx_1, x_2,…, x_n
2. a single point variable (x1,x2,,xn)(x_1, x_2,…, x_n)
3. a single vector variable x=x1,x2,,xn\mathbf{x} = \langle x_1, x_2,…, x_n \rangle
Limit of function of two variables lim(x,y)(a,b)f(x,y)=L\lim\limits_{(x,y)\to(a,b)}f(x,y)=L
Continuity of function of two variables lim(x,y)(a,b)f(x,y)=f(a,b)\lim\limits_{(x,y)\to(a,b)}f(x,y)=f(a,b)
Limit of function of several variables limxaf(x)=L\lim\limits_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})=L
Continuity of function of several variables limxaf(x)=f(a)\lim\limits_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})=f(\mathbf{a})
Description Equations
Partial derivative with respect to xx fx(x,y)=limh0f(x+h,y)f(x,y)hf_x(x,y) = \lim\limits_{h\to 0}\dfrac{f(x+h,y)-f(x,y)}{h}
Partial derivative with respect to yy fy(x,y)=limh0f(x,y+h)f(x,y)hf_y(x,y) = \lim\limits_{h\to 0}\dfrac{f(x,y+h)-f(x,y)}{h}
Partial derivative rule 1. To find fxf_x, regard yy as a constant and differentiate f(x,y)f(x,y) with respect to xx
2. To find fyf_y, regard xx as a constant and differentiate f(x,y)f(x,y) with respect to yy
Clairaut’s theorem fxy(a,b)=fyx(a,b)f_{xy}(a,b) = f_{yx}(a,b)
Description Equations
Tangent plane to a surface
z=f(x,y)z=f(x,y) at (x0,y0,z0)(x_0,y_0,z_0)
zz0=fx(x0,y0)+fy(x0,y0)(yy0)z-z_0=f_x(x_0,y_0)+f_y(x_0,y_0)(y-y_0)
Linear approximation f(x,y)f(a,b)+fx(a,b)(xa)+fy(a,b)(yb)f(x,y) \approx f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b)
Total differential dz=fx(x,y)dx+fy(x,y)dydz = f_x(x,y) dx + f_y(x,y) dy
Description Equations
Critical point a point with fx(a,b)=0f_x(a,b)=0 and fy(a,b)=0f_y(a,b)=0, (f=0)(\nabla f=\mathbf{0}), or one of the partial derivatives does not exist
Local max/min and critical point If ff has a local max/min at (a,b)(a,b),
then (a,b)(a,b) is a critical point
Second derivative test
((a,b)(a,b) is a critical point)
D(a,b)=fxx(a,b)fyy(a,b)[fxy(ab)]2D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(ab)]^2 \newline =fxxfxyfyxfyy= \begin{vmatrix} f_{xx} & f_{xy} \cr f_{yx} & f_{yy} \end{vmatrix}
(a) If D>0D>0 and fxx(a,b)>0f_{xx}(a,b)>0,
then f(a,b)f(a,b) is a local max
(b) If D>0D>0 and fxx(a,b)<0f_{xx}(a,b)<0,
then f(a,b)f(a,b) is a local min
(c) If D<0D<0,
then f(a,b)f(a,b) is a saddle point
Extreme value theorem for functions of two variables If ff is continuous on a closed, bounded set DR2D\in \R^2,
then ff attains a absolute max and min at some points in DD
Closed boundary method
(Finding absolute max/min)
1. Find the values of ff at the critical points of ff in DD
2. Find the extreme values of ff on the boundary of DD
3. The largest value is the abs max; the smallest value is the abs min

Chain rule, directional derivative, and gradient vector are not covered in MATH 126 but covered in MATH 324.

MATH 126 covers double integrals in Cartesian coordinates and polar coordinates with applications. They are reviewed in MATH 324.

Description Equations
First Taylor polynomial
(Tangent line approximation)
T1(x)f(b)+f(b)(xb)T_1(x) \approx f(b) + f'(b)(x-b)
Tangent line error E1=f(x)[f(b)+f(b)(xb)]\lvert E_1 \rvert = \bigg\lvert f(x) - [f(b)+f'(b)(x-b)] \bigg\rvert
Tangent line error bound f(t)ME1M2xb2\lvert f''(t) \rvert \le M \newline \lvert E_1 \rvert \le \dfrac{M}{2}\lvert x-b \rvert^2
Second Taylor polynomial
(Quadratic approximation)
T2(x)=f(b)+f(b)(xb)+12f(b)(xb)2T_2(x) = f(b) + f'(b)(x-b)+\frac{1}{2}f''(b)(x-b)^2
Quadratic approximation error E2=f(x)T2(x)\lvert E_2 \rvert = \lvert f(x) - T_2(x) \rvert
Quadratic approximation error bound E2M6xb3\lvert E_2 \rvert \le \dfrac{M}{6}\lvert x-b \rvert^3
Description Equations
nnth Taylor polynomial Tn(x)=k=0nf(k)(b)k!(xb)kT_n(x) = \displaystyle\sum\limits_{k=0}^{n} \dfrac{f^{(k)}(b)}{k!} (x-b)^k \newline =f(b)+f(b)(xa)+f(b)2!(xa)2++f(n)(b)n!(xb)n= f(b) + f'(b)(x-a) + \dfrac{f''(b)}{2!}(x-a)^2 + … + \dfrac{f^{(n)}(b)}{n!} (x-b)^n
Taylor inequality
(f(n+1)(t)M)(\lvert f^{(n+1)}(t) \rvert \le M)
f(x)Tn(x)M(n+1)!xbn+1\lvert f(x) - T_n(x) \rvert \le \dfrac{M}{(n+1)!} \lvert x-b \rvert^{n+1}
Taylor series limnTn(x)\lim\limits_{n\to\infin}T_n(x) \newline =limnk=0nf(k)(b)k!(xb)k= \displaystyle\lim\limits_{n\to\infin}\sum\limits_{k=0}^{n} \dfrac{f^{(k)}(b)}{k!} (x-b)^k \newline =k=0f(k)(b)k!(xb)k= \sum\limits_{k=0}^{\infin} \dfrac{f^{(k)}(b)}{k!} (x-b)^k
Taylor series of exponential function ex=k=0xkk!e^x = \displaystyle\sum\limits_{k=0}^{\infin} \dfrac{x^{k}}{k!}
Taylor series of sine cos(x)=k=0(1)kx2k(2k)!\cos(x) = \displaystyle\sum\limits_{k=0}^{\infin} (-1)^k \dfrac{x^{2k}}{(2k)!}
Taylor series of cosine sin(x)=k=0(1)kx2k+1(2k+1)!\sin(x) = \displaystyle\sum\limits_{k=0}^{\infin} (-1)^k \dfrac{x^{2k+1}}{(2k+1)!}
Geometric series as Taylor series
x(1,1)x\in(-1,1)
11x=k=0xk\dfrac{1}{1-x} = \displaystyle\sum\limits_{k=0}^{\infin} x^k