MATH 125 Calculus II

Contents
Description Equations
Indefinite integral (antiderivative) F(x)=f(x) dxF(x)=f(x)F(x) = \displaystyle\int f(x) \ dx \newline F'(x) = f(x)
Antiderivative as a family of functions
(Plus CC!)
If FF is an antiderivative of ff, CC is a constant,
then the most general antiderivative is F(x)+CF(x) + C
Function f(x)f(x) Antiderivative F(x)F(x) Function f(x)f(x) Antiderivative F(x)F(x)
xnx^n xn+1n+1+C\dfrac{x^{n+1}}{n+1}+C 1x\dfrac{1}{x} lnx+C\ln\lvert x \rvert + C
exe^x ex+Ce^x + C bxb^x bxlnb+C\dfrac{b^x}{\ln b} + C
sinx\sin x cosx+C-\cos x + C cosx\cos x sinx+C\sin x + C
sec2x\sec^2 x tanx+C\tan x + C csc2xcsc^2 x cotx+C-\cot x + C
secxtanx\sec x\tan x secx+C\sec x + C cscxcotx\csc x\cot x cscx+C-\csc x + C
1x2+a2\dfrac{1}{x^2 + a^2} 1aarctan(xa)+C\dfrac{1}{a}\arctan \left(\dfrac{x}{a}\right) + C 1a2x2\dfrac{1}{\sqrt{a^2-x^2}} arcsin(xa)+C\arcsin \left(\dfrac{x}{a}\right) + C
Description Equations
Area A=limnRn=limni=1nf(xi)ΔxA = \lim\limits_{n\to\infin} R_{n} = \lim\limits_{n\to\infin} \sum\limits_{i=1}^{n}f(x_i)\Delta x
Definite integral abf(x) dx=limni=1nf(xi)Δx\int_{a}^{b} f(x) \ dx = \lim\limits_{n\to\infin} \sum\limits_{i=1}^{n}f(x_i^*)\Delta x
Operational definition of definite integral as Riemann sum abf(x) dx=limni=1nf(xi)Δx\int_a^b f(x) \ dx = \lim\limits_{n\to\infin} \sum\limits_{i=1}^n f(x_i)\Delta x
Δx=banxi=a+iΔx\Delta x = \frac{b-a}{n} \newline x_i = a+i\Delta x
Sums of powers of positive integers i=1ni=n(n+1)2i=1ni2=n(n+1)(2n+1)6i=1ni3=[n(n+1)2]2\sum\limits_{i=1}^{n}i = \frac{n(n+1)}{2} \newline \sum\limits_{i=1}^{n}i^2 = \frac{n(n+1)(2n+1)}{6} \newline \sum\limits_{i=1}^{n}i^3 = \left[ \frac{n(n+1)}{2} \right]^2
Properties of summation i=1nc=nci=1ncai=ci=1naii=1n(ai±bi)=i=1nai±i=1nbi\sum\limits_{i=1}^{n}c = nc \newline \sum\limits_{i=1}^{n}ca_i = c\sum\limits_{i=1}^{n}a_i \newline \sum\limits_{i=1}^{n}(a_i \pm b_i) = \sum\limits_{i=1}^{n}a_i \pm \sum\limits_{i=1}^{n}b_i
Description Equations
Reversing the bounds changes the sign of definite integrals abf(x) dx=baf(x) dx\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx
Definite integral is zero if upper and lower bounds are the same aaf(x) dx=0\int_a^a f(x) \ dx = 0
Definite integrals of constant abc dx=c(ba)\int_a^b c \ dx = c(b-a)
Addition and subtraction of definite integrals ab[f(x)±g(x)] dx=abf(x) dx±abg(x) dx\int_a^b [f(x) \pm g(x)] \ dx \newline = \int_a^b f(x) \ dx \pm \int_a^b g(x) \ dx
Constant multiple of definite integrals abcf(x) dx=cabf(x) dx\int_a^b cf(x) \ dx = c\int_a^b f(x) \ dx
Comparison properties of definite integrals If f(x)0f(x) \ge 0 for x[a,b]x\in[a,b],
then abf(x) dx0\int_a^b f(x) \ dx \ge 0
Comparison properties of definite integrals If f(x)g(x)f(x) \ge g(x) for x[a,b]x\in[a,b],
then abf(x) dxabg(x) dx\int_a^b f(x) \ dx \ge \int_a^b g(x) \ dx
Comparison properties of definite integrals If mf(x)Mm \le f(x) \le M for x[a,b]x\in[a,b],
then m(ba)abf(x) dxM(ba)m(b-a) \le \int_a^b f(x) \ dx \le M(b-a)
Description Equations
Fundamental theorem of calculus I
(ff is continuous on [a,b][a,b])
g(x)=axf(t) dtg(x)=f(x)g(x) = \displaystyle\int_a^x f(t) \ dt \newline g'(x) = f(x)
Fundamental theorem of calculus II
(ff is continuous on [a,b][a,b])
abf(x) dx=F(b)F(a)\displaystyle\int_a^b f(x) \ dx = F(b) - F(a)
where FF is any antiderivative of ff
Net change theorem
The integral of a rate of change is the net change
abF(x) dx=F(b)F(a)\displaystyle\int_a^b F'(x) \ dx = F(b) - F(a)
Description Equations
Substitution rule (u-substitution)
ug(x)u \equiv g(x)
f(g(x))g(x) dx=f(u) du\displaystyle\int f(g(x)) g'(x) \ dx = \int f(u) \ du
Substitution rule for definite integrals
ug(x)u \equiv g(x)
abf(g(x))g(x) dx=g(a)g(b)f(u) du\displaystyle\int_a^b f(g(x))g'(x) \ dx = \int_{g(a)}^{g(b)} f(u) \ du
Integrals of even functions aaf(x) dx=20af(x) dx\int_{-a}^a f(x) \ dx = 2 \int_{0}^a f(x) \ dx
Integrals of odd functions aaf(x) dx=0\int_{-a}^a f(x) \ dx = 0
Description Equations
Integration by parts f(x)g(x) dx=f(x)g(x)g(x)f(x) dx\int f(x)g'(x) \ dx \newline = f(x)g(x) - \int g(x)f'(x) \ dx
Integration by parts u dv=uvv du\int u \ dv = uv - \int v \ du
Integration by parts for definite integrals abfg dx=[fg]ababfg dx\int_a^b fg' \ dx = [fg]_a^b - \int_a^b f’g \ dx
Description Equations
Midpoint rule abf(x) dxi=1nf(xˉi)Δx\int_a^b f(x) \ dx \approx \sum\limits_{i=1}^n f(\bar{x}_i)\Delta x
Δx=banxˉi=12(xi1+xi)\Delta x = \frac{b-a}{n} \newline \bar{x}_i = \frac{1}{2}(x_{i-1}+x_i)
Error bound for midpoint rule EMK(ba)324n2\lvert E_M \rvert \le \dfrac{K(b-a)^3}{24n^2}
Trapezoidal rule abf(x) dx12Δx[f(x0)+2f(x1)++2f(xn1)+f(xn)]\int_a^b f(x) \ dx \approx \frac{1}{2}\Delta x [f(x_0) + 2f(x_1) + … + 2f(x_{n-1}) + f(x_n)]
Δx=banxi=a+iΔx\Delta x = \frac{b-a}{n} \newline x_i = a + i\Delta x
Error bound for trapezoidal rule ETK(ba)312n2\lvert E_T \rvert \le \dfrac{K(b-a)^3}{12n^2}
Simpson’s rule abf(x) dx13Δx[f(x0)+4f(x1)+2f(x2)+4f(x3)++2f(xn2)+4f(xn1)+f(xn)]\int_a^b f(x) \ dx \approx \frac{1}{3}\Delta x [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + … + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]
Δx=ban\Delta x = \frac{b-a}{n}, n is even
Error bound for Simpson’s rule ESK(ba)5180n4\lvert E_S \rvert \le \dfrac{K(b-a)^5}{180n^4}
Description Equations
Integral of odd power of cosine
(u=sinx)(u = \sin x)
sinm(x)cos2k+1(x) dx=sinm(x)[cos2(x)]k dx=sinm(x)[1sin2(x)]k dx\int \sin^m(x)\cos^{2k+1}(x) \ dx \newline = \int \sin^m(x) [\cos^2 (x)]^k \ dx \newline = \int \sin^m(x)[1-\sin^2(x)]^k \ dx
Integral of odd power of sine
(u=cosx)(u = \cos x)
sin2k+1(x)cosn(x) dx=[sin2(x)]kcosn(x)sin(x) dx=[1cos2(x)]kcosn(x)sin(x) dx\int \sin^{2k+1}(x)\cos^{n}(x) \ dx \newline = \int [\sin^2 (x)]^k \cos^n(x) \sin(x) \ dx \newline = \int [1-\cos^2(x)]^k \cos^n(x) \sin(x) \ dx
Integral of even power of sine and cosine use trig identities sin2(x)=12(1cos(2x))cos2(x)=12(1+cos(2x))sin(x)cos(x)=12sin(2x)\sin^2(x) = \frac{1}{2}(1-\cos(2x)) \newline \cos^2(x) = \frac{1}{2}(1+\cos(2x)) \newline \sin(x)\cos(x) = \frac{1}{2}\sin(2x)
Integral of even power of secant
(u=tanx)(u = \tan x)
tanm(x)sec2k(x) dx=tanm(x)[sec2(x)]k1sec2(x) dx=tanm(x)[1+tan2(x)]k1sec2(x) dx\int \tan^m(x)\sec^{2k}(x) \ dx \newline = \int \tan^m(x)[\sec^2(x)]^{k-1}\sec^2(x) \ dx \newline = \int \tan^m(x)[1+\tan^2(x)]^{k-1}\sec^2(x) \ dx
Integral of odd power of tangent
(u=secx)(u = \sec x)
tan2k+1(x)secn(x) dx=[tan2(x)]ksecn1(x)sec(x)tan(x) dx=[sec2(x)1]ksecn1(x)sec(x)tan(x) dx\int tan^{2k+1}(x)\sec^n(x) \ dx \newline = \int[\tan^2(x)]^k\sec^{n-1}(x)\sec(x)\tan(x) \ dx \newline = \int [\sec^2(x)-1]^k\sec^{n-1}(x)\sec(x)\tan(x) \ dx
Trig identity for solving
sin(mx)cos(nx) dx\int \sin(mx)\cos(nx) \ dx
sinAcosB=12[sin(AB)+sin(A+B)]\sin A \cos B = \frac{1}{2}[\sin(A-B) + \sin(A+B)]
Trig identity for solving
sin(mx)sin(nx) dx\int \sin(mx)\sin(nx) \ dx
sinAsinB=12[cos(AB)cos(A+B)]\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]
Trig identity for solving
cos(mx)cos(nx) dx\int \cos(mx)\cos(nx) \ dx
cosAcosB=12[cos(AB)+cos(A+B)]\cos A \cos B = \frac{1}{2}[\cos(A-B) + \cos(A+B)]
Expression Substitution Trigonometric Identity
a2x2\sqrt{a^2 - x^2} x=asinθx = a\sin\theta 1sin2θ=cos2θ1 - \sin^2\theta = \cos^2\theta
a2+x2\sqrt{a^2 + x^2} x=atanθx = a\tan\theta 1+tan2θ=sec2θ1+\tan^2\theta = \sec^2\theta
x2a2\sqrt{x^2 - a^2} x=asecθx = a\sec\theta sec2θ1=tan2θ\sec^2\theta-1 = \tan^2\theta
Description Equations
Improper integrals with single one-side infinite intervals af(x) dx=limtatf(x) dxbf(x) dx=limttbf(x) dx\int_a^\infin f(x) \ dx = \lim\limits_{t\to\infin}\int_a^t f(x) \ dx \newline \int_{-\infin}^b f(x) \ dx = \lim\limits_{t\to-\infin}\int_t^b f(x) \ dx
Improper integrals with single two-side infinite intervals f(x) dx=af(x) dx+af(x) dx\int_{-\infin}^\infin f(x) \ dx \newline = \int_{-\infin}^a f(x) \ dx + \int_a^\infin f(x) \ dx
Convergence and divergence of improper integrals of power functions 11xp dx\displaystyle\int_1^\infin \dfrac{1}{x^p} \ dx
convergent if p>1p>1
divergent if p1p \le 1
Improper integrals with discontinuous integrand on one side abf(x) dx=limtbatf(x) dxabf(x) dx=limta+tbf(x) dx\int_a^b f(x) \ dx = \lim\limits_{t\to b^-}\int_a^t f(x) \ dx \newline \int_a^b f(x) \ dx = \lim\limits_{t\to a^+}\int_t^b f(x) \ dx
Improper integrals with discontinuous integrand in the middle cc abf(x) dx=acf(x) dx+cbf(x) dx\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx
Comparison theorem
(f(x)g(x)0,xa)(f(x) \ge g(x) \ge 0, x \ge a)
(a) If af(x) dx\int_a^\infin f(x) \ dx is convergent,
then ag(x) dx\int_a^\infin g(x) \ dx is convergent.
(b) If ag(x) dx\int_a^\infin g(x) \ dx is divergent,
then af(x) dx\int_a^\infin f(x) \ dx is divergent.
Description Equations
Areas between curves A=ab[f(x)g(x)] dxA = \int_a^b [f(x) - g(x)] \ dx
Volume by method of disks and washers V=abA(x) dxV = \int_a^b A(x) \ dx
Volume by method of cylindrical shells
(rotating about y-axis)
V=ab2πxf(x) dxV = \int_a^b 2\pi x f(x) \ dx
Average value of a function fˉ=1baabf(x) dx\bar{f} = \frac{1}{b-a}\int_a^b f(x) \ dx
The mean value theorem of integrals If ff is continuous on [a,b][a,b],
then there exists c[a,b]c\in[a,b] such that
f(c)=fˉ=1baabf(x) dxf(c) = \bar{f} = \frac{1}{b-a}\int_a^b f(x) \ dx,
abf(x) dx=f(c)(ba)\int_a^b f(x) \ dx = f(c)(b-a)
Arc length formula L=ab1+[f(x)]2 dxL = \int_a^b \sqrt{1+[f'(x)]^2} \ dx
Arc length function s(x)=ax1+[f(t)]2 dts(x) = \int_a^x \sqrt{1+[f'(t)]^2} \ dt
Surface area of surface of resolution about x-axis S=ab2πf(x)1+[f(x)]2 dxS = \int_a^b 2\pi f(x)\sqrt{1 + [f'(x)]^2} \ dx