MATH 124 Calculus I

Contents
Description Equations
Limit limxaf(x)=L\lim\limits_{x\to a} f(x) = L
Left-hand limit limxaf(x)=L\lim\limits_{x\to a^-} f(x) = L
Right-hand limit limxa+f(x)=L\lim\limits_{x\to a^+} f(x) = L
Infinite limit limxaf(x)=±\lim\limits_{x\to a} f(x) = \pm\infin
Limit at infinity limx±f(x)=L\lim\limits_{x\to \pm\infin} f(x) = L
Limit existence limxaf(x)=L=limxa+f(x)\lim\limits_{x\to a^-} f(x) = L = \lim\limits_{x\to a^+} f(x)
    limxaf(x)=L\iff \lim\limits_{x\to a} f(x) = L
Limit non-existence 1. limxaf(x)limxa+f(x)\lim\limits_{x\to a^-} f(x) \not= \lim\limits_{x\to a^+} f(x)
2. limxaf(x)=±\lim\limits_{x\to a} f(x) = \pm\infin
3. oscillation
Description Equations
Limit addition and subtraction limxa[f(x)±g(x)]=limxaf(x)±limxag(x)\lim\limits_{x\to a} [f(x) \pm g(x)] = \lim\limits_{x\to a} f(x) \pm \lim\limits_{x\to a} g(x)
Limit constant multiplication limxa[cf(x)]=climxaf(x)\lim\limits_{x\to a} [cf(x)] = c \lim\limits_{x\to a} f(x)
Limit multiplication limxa[f(x)g(x)]=limxaf(x)limxag(x)\lim\limits_{x\to a} [f(x)g(x)] = \lim\limits_{x\to a} f(x) \cdot \lim\limits_{x\to a} g(x)
Limit division limxaf(x)g(x)=limxaf(x)limxag(x) if limxag(x)0\lim\limits_{x\to a} \dfrac{f(x)}{g(x)} = \dfrac{\lim\limits_{x\to a} f(x)}{\lim\limits_{x\to a} g(x)} \text{ if } \lim\limits_{x\to a} g(x) \not= 0
Limit power law
(nn is positive integer)
limxa[f(x)]n=[limxaf(x)]n\lim\limits_{x\to a} [f(x)]^n = [\lim\limits_{x\to a} f(x)]^n
Limit at infinity of inverse power
(r>0)(r>0)
limx±1xr=0\lim\limits_{x\to \pm\infin} \dfrac{1}{x^r} = 0
Limit root law
(nn is positive integer; limit > 0 for even nn)
limxaf(x)n=limxaf(x)n\lim\limits_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim\limits_{x\to a} f(x)}
Direct substitution property of limit If ff is a polynomial or rational function,
then limxaf(x)=f(a)\lim\limits_{x\to a} f(x) = f(a)
Limit of functions with holes If f(x)=g(x)f(x) = g(x) when xax\not= a,
then limxaf(x)=limxag(x)\lim\limits_{x\to a} f(x) = \lim\limits_{x\to a} g(x) if it exists
The squeeze theorem If f(x)g(x)h(x)f(x) \le g(x) \le h(x) when xx is near aa and if limxaf(x)=limxah(x)=L\lim\limits_{x\to a} f(x) = \lim\limits_{x\to a} h(x) = L,
then limxag(x)=L\lim\limits_{x\to a} g(x) = L
Description Equations
Continuous at a number aa limxaf(x)=f(a)\lim\limits_{x\to a} f(x) = f(a)
Continuous from the left at a number aa limxaf(x)=f(a)\lim\limits_{x\to a^-} f(x) = f(a)
Continuous from the right at a number aa limxa+f(x)=f(a)\lim\limits_{x\to a^+} f(x) = f(a)
Continuous operations addition, subtraction, multiplication, division
Continuous functions in their domain polynomials, rational, root, trigonometric, inverse trigonometric, exponential, logarithmic functions
Types of discontinuity 1. removable discontinuity
2. jump discontinuity
3. infinite discontinuity
Continuity of function inputs and outputs If ff is continuous at bb and limxag(x)=b\lim\limits_{x\to a} g(x) = b,
then limxaf(g(x))=f(limxag(x))\lim\limits_{x\to a} f(g(x)) = f(\lim\limits_{x\to a} g(x))
Continuity of composite functions If gg is continuous at aa and
if ff is continuous at g(a)g(a),
then (fg)(x)=f(g(x))(f\circ g)(x) = f(g(x)) is continuous
Intermediate value theorem If ff is continuous on the closed interval [a,b][a, b], and let N be any number between f(a)f(a) and f(b)f(b), where f(a)f(b)f(a) \not= f(b),
then there exist a number cc in (a,b)(a, b) such that f(c)=Nf(c) = N
Description Equations
Derivative of a function ff at number aa f(a)=limh0f(a+h)f(a)hf'(a) = \lim\limits_{h \to 0} \dfrac{f(a+h) - f(a)}{h}:
f(a)=limxaf(x)f(a)xaf'(a) = \lim\limits_{x \to a} \dfrac{f(x) - f(a)}{x-a}
Derivative as a function f(x)=limh0f(x+h)f(x)hf'(x) = \lim\limits_{h \to 0}\dfrac{f(x+h) - f(x)}{h}
Geometric interpretation of derivatives The tangent line of y=f(x)y = f(x) at (a,f(a))(a, f(a)) has a slope of f(a)f'(a)
m=limxaf(x)f(a)xa=f(a)m = \lim\limits_{x \to a} \dfrac{f(x) - f(a)}{x-a} = f'(a)
Derivatives and instantaneous rate of change The derivative f(a)f'(a) is the instantaneous rate of change of y=f(x)y=f(x) with respect to xx when x=ax=a:
v(a)=limh0f(a+h)f(a)h=f(a)v(a) = \lim\limits_{h \to 0} \dfrac{f(a+h) - f(a)}{h} = f'(a)
Differentiation and continuity If ff is differentiable at aa,
then ff is continuous at aa.
Non-differentiable conditions 1. a corner
2. a discontinuity
3. a vertical tangent
Description Equations
Constant multiple rule ddx[cf(x)]=cddxf(x)\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)
Addition and subtraction rule ddx[f(x)±g(x)]=ddxf(x)±ddxg(x)\frac{d}{dx}[f(x)\pm g(x)] = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)
Product rule ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)
Quotient rule
(best practice: use product rule)
ddxf(x)g(x)=f(x)g(x)f(x)g(x)g(x)2\frac{d}{dx}\dfrac{f(x)}{g(x)} = \dfrac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}
Constant rule ddxc=0\frac{d}{dx}c = 0
Power rule ddxxn=nxn1\frac{d}{dx} x^n = nx^{n-1}
Chain rule dydx=dydududxddxf(g(x))=f(g(x))g(x)\dfrac{dy}{dx} = \dfrac{dy}{du}\dfrac{du}{dx} \newline \frac{d}{dx} f(g(x)) = f'(g(x))\cdot g'(x)
Linear approximations f(x)f(a)+f(a)(xa)f(x) \approx f(a) + f'(a)(x-a)
Differentials dy=f(x) dxdy = f'(x) \ dx
Description Equations
Limit associated with sine limθ0sinθθ=1\lim\limits_{\theta \to 0}\dfrac{\sin\theta}{\theta} = 1
Limit associated with cosine limθ0cosθ1θ=0\lim\limits_{\theta\to 0}\dfrac{\cos\theta - 1}{\theta} = 0
Definition of ee limh0eh1h=1\lim\limits_{h\to 0}\dfrac{e^h - 1}{h} = 1
ee as a limit e=limx0(1+x)1/xe = \lim\limits_{x\to 0} (1+x)^{1/x}
ee as a limit e=limn(1+1n)ne = \lim\limits_{n\to \infin} (1+\frac{1}{n})^{n}
Function f(x)f(x) Derivative f(x)f'(x) Function f(x)f(x) Derivative f(x)f'(x)
cc 00 xnx^n nxn1nx^{n-1}
xx 11 x\lvert x \rvert xx\dfrac{x}{\lvert x \rvert}
exe^x exe^x lnx\ln x 1x\dfrac{1}{x}
axa^x axln(a)a^x\ln(a) logax\log_{a}x 1xln(a)\dfrac{1}{x\ln(a)}
sinx\sin x cosx\cos x secx\sec x secxtanx\sec x \tan x
cosx\cos x sinx-\sin x cscx\csc x cscxcotx-\csc x \cot x
tanx\tan x sec2x\sec^2 x cotx\cot x csc2x-\csc^2 x
arcsinx\arcsin x 11x2\dfrac{1}{\sqrt{1-x^2}} arctanx\arctan x 11+x2\dfrac{1}{1+x^2}
arccosx\arccos x 11x2\dfrac{-1}{\sqrt{1-x^2}}
Description Equations
Extreme values Maximum and minimum values of ff
Absolute maximum f(a)f(x)f(a) \ge f(x) for all xDx \in D
Absolute maximum f(a)f(x)f(a) \le f(x) for all xDx \in D
Local maximum f(a)f(x)f(a) \ge f(x) for xx near aa
Local minimum f(a)f(x)f(a) \le f(x) for xx near aa
Critical number cc f(c)=0f'(c) = 0 or
f(c)f'(c) does not exist
Extreme value theorem If ff is continuous on a closed interval [a,b][a, b],
then ff attains an absolute maximum f(c)f(c) and absolute minimum f(d)f(d) at some number c,d[a,b]c, d \in [a, b]
Fermat’s theorem If ff has a local maximum or minimum at cc,
then cc is a critical number of f
Closed interval method
(Finding the absolute max and min in [a,b][a,b])
1. Find the values of ff at critical numbers of ff in (a,b)(a, b)
2. Find the values of ff at the endpoints of the interval
3. Compare the values. The largest is the abs max; the smallest is the abs min
Description Equations
Rolle’s theorem If ff is continuous on [a,b][a,b], differentiable on (a,b)(a,b), and endpoints f(a)=f(b)f(a) = f(b),
then there is a number c(a,b)c \in (a,b) such that f(c)=0f'(c) = 0
The mean value theorem If ff is continuous on [a,b][a,b], differentiable on (a,b)(a,b),
then there is a number c(a,b)c \in (a,b) such that f(c)=f(b)f(a)baf'(c) = \dfrac{f(b) - f(a)}{b-a}
Functions with derivative of zero are constants If f(x)=0f'(x) = 0 for all x(a,b)x \in (a,b),
then ff is constant on (a,b)(a,b)
Functions with same derivatives are vertical translations of each other If f(x)=g(x)f'(x) = g'(x) for all x(a,b)x \in (a,b),
then f(x)=g(x)+cf(x) = g(x) + c on (a,b)(a,b)
Description Equations
Increasing f(x1)<f(x2)f(x_1) < f(x_2) for x1<x2x_1 < x_2 in II
Deceasing f(x1)>f(x2)f(x_1) > f(x_2) for x1<x2x_1 < x_2 in II
Increasing/decreasing test (a) If f(x)>0f'(x)>0 on an interval, then ff is increasing on that interval.
(b) If f(x)<0f'(x)<0 on an interval, then ff is decreasing on that interval.
First derivative test If cc is a critical value of continuous function ff, then
(a) If ff' changes ++ \to - at c,
then ff has a local max at cc
(b) If ff' changes +- \to + at c,
then ff has a local min at cc
(c) If ff' has no sign change at c,
then ff has no local max/min at cc
Concave upward If the graph of ff lies above all its tangents on an interval II (slope increases)
Concave downward If the graph of ff lies below all its tangents on an interval II (slope decreases)
Inflection point The point at which the curve changes concavity
Concavity test (a) If f(x)>0f''(x)>0 on an interval, then ff is concave upward on that interval.
(b) If f(x)<0f''(x)<0 on an interval, then ff is concave downward on that interval.
Second derivative test If ff'' is continuous near cc,
(a) If f(c)=0f'(c) = 0 and f(c)>0f''(c)>0,
then ff has a local min at cc
(b) If f(c)=0f'(c) = 0 and f(c)<0f''(c)<0,
then ff has a local max at cc
Description Equations
Indeterminate forms limxafg=00,\lim\limits_{x\to a}\dfrac{f}{g} = \dfrac{0}{0}, \dfrac{\infin}{\infin}
L’Hospital’s rule If ff and gg are differentiable and g(x)0g'(x) \not= 0 on open interval II that contains aa, and if the division has indeterminate form of 00\frac{0}{0} or \frac{\infin}{\infin},
then limxaf(x)g(x)=limxaf(x)g(x)\lim\limits_{x \to a}\dfrac{f(x)}{g(x)} = \lim\limits_{x \to a}\dfrac{f'(x)}{g'(x)}
Indeterminate products limxafg=0limxafg=f1/g=g1/f\lim\limits_{x\to a}fg = 0 \cdot \infin \newline \lim\limits_{x\to a}fg = \dfrac{f}{1/g} = \dfrac{g}{1/f}
Indeterminate differences limxa(fg)=\lim\limits_{x\to a}(f-g) = \infin-\infin
Indeterminate powers limxa[f(x)]g(x)=00,0,1y[f(x)]g(x)lny=g(x)lnf(x)\lim\limits_{x\to a}[f(x)]^{g(x)} = 0^0, \infin^0, 1^{\infin} \newline y \equiv [f(x)]^{g(x)} \newline \ln y = g(x) \ln f(x)
Description Equations
Newton’s method xn+1=xnf(xn)f(xn)x_{n+1} = x_{n} - \dfrac{f(x_n)}{f'(x_n)}