Contents

MATH 124 Calculus I

Limits and Continuity

Limits

Description Equations
Limit $\lim\limits_{x\to a} f(x) = L$
Left-hand limit $\lim\limits_{x\to a^-} f(x) = L$
Right-hand limit $\lim\limits_{x\to a^+} f(x) = L$
Infinite limit $\lim\limits_{x\to a} f(x) = \pm\infin$
Limit at infinity $\lim\limits_{x\to \pm\infin} f(x) = L$
Limit existence $\lim\limits_{x\to a^-} f(x) = L = \lim\limits_{x\to a^+} f(x)$
$\iff \lim\limits_{x\to a} f(x) = L$
Limit non-existence 1. $\lim\limits_{x\to a^-} f(x) \not= \lim\limits_{x\to a^+} f(x)$
2. $\lim\limits_{x\to a} f(x) = \pm\infin$
3. oscillation

Limit laws

Description Equations
Limit addition and subtraction $\lim\limits_{x\to a} [f(x) \pm g(x)] = \lim\limits_{x\to a} f(x) \pm \lim\limits_{x\to a} g(x)$
Limit constant multiplication $\lim\limits_{x\to a} [cf(x)] = c \lim\limits_{x\to a} f(x)$
Limit multiplication $\lim\limits_{x\to a} [f(x)g(x)] = \lim\limits_{x\to a} f(x) \cdot \lim\limits_{x\to a} g(x)$
Limit division $\lim\limits_{x\to a} \dfrac{f(x)}{g(x)} = \dfrac{\lim\limits_{x\to a} f(x)}{\lim\limits_{x\to a} g(x)} \text{ if } \lim\limits_{x\to a} g(x) \not= 0$
Limit power law
($n$ is positive integer)
$\lim\limits_{x\to a} [f(x)]^n = [\lim\limits_{x\to a} f(x)]^n$
Limit at infinity of inverse power
$(r>0)$
$\lim\limits_{x\to \pm\infin} \dfrac{1}{x^r} = 0$
Limit root law
($n$ is positive integer; limit > 0 for even $n$)
$\lim\limits_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim\limits_{x\to a} f(x)}$
Direct substitution property of limit If $f$ is a polynomial or rational function,
then $\lim\limits_{x\to a} f(x) = f(a)$
Limit of functions with holes If $f(x) = g(x)$ when $x\not= a$,
then $\lim\limits_{x\to a} f(x) = \lim\limits_{x\to a} g(x)$ if it exists
The squeeze theorem If $f(x) \le g(x) \le h(x)$ when $x$ is near $a$ and if $\lim\limits_{x\to a} f(x) = \lim\limits_{x\to a} h(x) = L$,
then $\lim\limits_{x\to a} g(x) = L$

Continuity

Description Equations
Continuous at a number $a$ $\lim\limits_{x\to a} f(x) = f(a)$
Continuous from the left at a number $a$ $\lim\limits_{x\to a^-} f(x) = f(a)$
Continuous from the right at a number $a$ $\lim\limits_{x\to a^+} f(x) = f(a)$
Continuous operations addition, subtraction, multiplication, division
Continuous functions in their domain polynomials, rational, root, trigonometric, inverse trigonometric, exponential, logarithmic functions
Types of discontinuity 1. removable discontinuity
2. jump discontinuity
3. infinite discontinuity
Continuity of function inputs and outputs If $f$ is continuous at $b$ and $\lim\limits_{x\to a} g(x) = b$,
then $\lim\limits_{x\to a} f(g(x)) = f(\lim\limits_{x\to a} g(x))$
Continuity of composite functions If $g$ is continuous at $a$ and
if $f$ is continuous at $g(a)$,
then $(f\circ g)(x) = f(g(x))$ is continuous
Intermediate value theorem If $f$ is continuous on the closed interval $[a, b]$, and let N be any number between $f(a)$ and $f(b)$, where $f(a) \not= f(b)$,
then there exist a number $c$ in $(a, b)$ such that $f(c) = N$

Differentiation

Derivatives

Description Equations
Derivative of a function $f$ at number $a$ $f'(a) = \lim\limits_{h \to 0} \dfrac{f(a+h) - f(a)}{h}$:
$f'(a) = \lim\limits_{x \to a} \dfrac{f(x) - f(a)}{x-a}$
Derivative as a function $f'(x) = \lim\limits_{h \to 0}\dfrac{f(x+h) - f(x)}{h}$
Geometric interpretation of derivatives The tangent line of $y = f(x)$ at $(a, f(a))$ has a slope of $f'(a)$
$m = \lim\limits_{x \to a} \dfrac{f(x) - f(a)}{x-a} = f'(a)$
Derivatives and instantaneous rate of change The derivative $f'(a)$ is the instantaneous rate of change of $y=f(x)$ with respect to $x$ when $x=a$:
$v(a) = \lim\limits_{h \to 0} \dfrac{f(a+h) - f(a)}{h} = f'(a)$
Differentiation and continuity If $f$ is differentiable at $a$,
then $f$ is continuous at $a$.
Non-differentiable conditions 1. a corner
2. a discontinuity
3. a vertical tangent

Differentiation rules

Description Equations
Constant multiple rule $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)$
Addition and subtraction rule $\frac{d}{dx}[f(x)\pm g(x)] = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$
Product rule $\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$
Quotient rule
(best practice: use product rule)
$\frac{d}{dx}\dfrac{f(x)}{g(x)} = \dfrac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$
Constant rule $\frac{d}{dx}c = 0$
Power rule $\frac{d}{dx} x^n = nx^{n-1}$
Chain rule $\dfrac{dy}{dx} = \dfrac{dy}{du}\dfrac{du}{dx} \newline \frac{d}{dx} f(g(x)) = f'(g(x))\cdot g'(x)$
Linear approximations $f(x) \approx f(a) + f'(a)(x-a)$
Differentials $dy = f'(x) \ dx$

Special limits

Description Equations
Limit associated with sine $\lim\limits_{\theta \to 0}\dfrac{\sin\theta}{\theta} = 1$
Limit associated with cosine $\lim\limits_{\theta\to 0}\dfrac{\cos\theta - 1}{\theta} = 0$
Definition of $e$ $\lim\limits_{h\to 0}\dfrac{e^h - 1}{h} = 1$
$e$ as a limit $e = \lim\limits_{x\to 0} (1+x)^{1/x}$
$e$ as a limit $e = \lim\limits_{n\to \infin} (1+\frac{1}{n})^{n}$

Table of derivatives

Function $f(x)$ Derivative $f'(x)$ Function $f(x)$ Derivative $f'(x)$
$c$ $0$ $x^n$ $nx^{n-1}$
$x$ $1$ $\lvert x \rvert$ $\dfrac{x}{\lvert x \rvert}$
$e^x$ $e^x$ $\ln x$ $\dfrac{1}{x}$
$a^x$ $a^x\ln(a)$ $\log_{a}x$ $\dfrac{1}{x\ln(a)}$
$\sin x$ $\cos x$ $\sec x$ $\sec x \tan x$
$\cos x$ $-\sin x$ $\csc x$ $-\csc x \cot x$
$\tan x$ $\sec^2 x$ $\cot x$ $-\csc^2 x$
$\arcsin x$ $\dfrac{1}{\sqrt{1-x^2}}$ $\arctan x$ $\dfrac{1}{1+x^2}$
$\arccos x$ $\dfrac{-1}{\sqrt{1-x^2}}$

Applications of Differentiation

Absolute extreme values

Description Equations
Extreme values Maximum and minimum values of $f$
Absolute maximum $f(a) \ge f(x)$ for all $x \in D$
Absolute maximum $f(a) \le f(x)$ for all $x \in D$
Local maximum $f(a) \ge f(x)$ for $x$ near $a$
Local minimum $f(a) \le f(x)$ for $x$ near $a$
Critical number $c$ $f'(c) = 0$ or
$f'(c)$ does not exist
Extreme value theorem If $f$ is continuous on a closed interval $[a, b]$,
then $f$ attains an absolute maximum $f(c)$ and absolute minimum $f(d)$ at some number $c, d \in [a, b]$
Fermat’s theorem If $f$ has a local maximum or minimum at $c$,
then $c$ is a critical number of f
Closed interval method
(Finding the absolute max and min in $[a,b]$)
1. Find the values of $f$ at critical numbers of $f$ in $(a, b)$
2. Find the values of $f$ at the endpoints of the interval
3. Compare the values. The largest is the abs max; the smallest is the abs min

The mean value theorem

Description Equations
Rolle’s theorem If $f$ is continuous on $[a,b]$, differentiable on $(a,b)$, and endpoints $f(a) = f(b)$,
then there is a number $c \in (a,b)$ such that $f'(c) = 0$
The mean value theorem If $f$ is continuous on $[a,b]$, differentiable on $(a,b)$,
then there is a number $c \in (a,b)$ such that $f'(c) = \dfrac{f(b) - f(a)}{b-a}$
Functions with derivative of zero are constants If $f'(x) = 0$ for all $x \in (a,b)$,
then $f$ is constant on $(a,b)$
Functions with same derivatives are vertical translations of each other If $f'(x) = g'(x)$ for all $x \in (a,b)$,
then $f(x) = g(x) + c$ on $(a,b)$

Local extreme values

Description Equations
Increasing $f(x_1) < f(x_2)$ for $x_1 < x_2$ in $I$
Deceasing $f(x_1) > f(x_2)$ for $x_1 < x_2$ in $I$
Increasing/decreasing test (a) If $f'(x)>0$ on an interval, then $f$ is increasing on that interval.
(b) If $f'(x)<0$ on an interval, then $f$ is decreasing on that interval.
First derivative test If $c$ is a critical value of continuous function $f$, then
(a) If $f'$ changes $+ \to -$ at c,
then $f$ has a local max at $c$
(b) If $f'$ changes $- \to +$ at c,
then $f$ has a local min at $c$
(c) If $f'$ has no sign change at c,
then $f$ has no local max/min at $c$
Concave upward If the graph of $f$ lies above all its tangents on an interval $I$ (slope increases)
Concave downward If the graph of $f$ lies below all its tangents on an interval $I$ (slope decreases)
Inflection point The point at which the curve changes concavity
Concavity test (a) If $f''(x)>0$ on an interval, then $f$ is concave upward on that interval.
(b) If $f''(x)<0$ on an interval, then $f$ is concave downward on that interval.
Second derivative test If $f''$ is continuous near $c$,
(a) If $f'(c) = 0$ and $f''(c)>0$,
then $f$ has a local min at $c$
(b) If $f'(c) = 0$ and $f''(c)<0$,
then $f$ has a local max at $c$

L’Hospital’s rule

Description Equations
Indeterminate forms $\lim\limits_{x\to a}\dfrac{f}{g} = \dfrac{0}{0}, \dfrac{\infin}{\infin}$
L’Hospital’s rule If $f$ and $g$ are differentiable and $g'(x) \not= 0$ on open interval $I$ that contains $a$, and if the division has indeterminate form of $\frac{0}{0}$ or $\frac{\infin}{\infin}$,
then $\lim\limits_{x \to a}\dfrac{f(x)}{g(x)} = \lim\limits_{x \to a}\dfrac{f'(x)}{g'(x)}$
Indeterminate products $\lim\limits_{x\to a}fg = 0 \cdot \infin \newline \lim\limits_{x\to a}fg = \dfrac{f}{1/g} = \dfrac{g}{1/f}$
Indeterminate differences $\lim\limits_{x\to a}(f-g) = \infin-\infin$
Indeterminate powers $\lim\limits_{x\to a}[f(x)]^{g(x)} = 0^0, \infin^0, 1^{\infin} \newline y \equiv [f(x)]^{g(x)} \newline \ln y = g(x) \ln f(x)$

Newton’s method

Description Equations
Newton’s method $x_{n+1} = x_{n} - \dfrac{f(x_n)}{f'(x_n)}$