CHM ENG 250 Transport Processes
Contents
Math “Review”
Notations
Description | Equations |
---|---|
Zero-order tensor (Scalar) | $(s) \in \mathbb{R}$ |
First-order tensor (Vector) | $[\mathbf{v}] \in E^3$ |
Second-order tensor | $\{ \mathbf{T} \} \in L(E^3, E^3)$ |
Partial derivatives | $\phi_{,i} \equiv \dfrac{\partial \phi}{\partial x_i}$ |
Kronecker delta | $\delta_{ij} = \begin{cases} 1 && i = j \\ 0 && i \not= j \end{cases}$ |
Permutation symbol Levi-Civita symbol |
$\varepsilon_{ijk} = \begin{cases} 1 & ijk = 123, 231, 312 \\ -1 & ijk = 321, 132, 213 \\ 0 & \text{otherwise (two indices alike)} \end{cases}$ |
Set theory
Description | Equations |
---|---|
Integers | $\mathbb{Z}$ |
Natural numbers | $\mathbb{N}$ |
Real numbers | $\mathbb{R}$ |
Element of (in) | $x \in X$ |
Not element of (not in) | $x \not\in X$ |
Subset | $X \sube Y$ |
Proper subset | $X \sub Y$ |
Union (or) | $X \cup Y$ |
Intersection (and) | $X \cap Y$ |
Empty set | $\varnothing$ |
Cartesian product | $X \times Y = \{(x, y) \ \vert\ x \in X, y \in Y\}$ |
Vector spaces
Vector spaces definitions
Definition of Vector Space $\{V, +; \mathbb{R}, \cdot\}$ | Equations |
---|---|
Closure under linear combination | $\mathbf{u} \in V$, $\mathbf{v} \in V$ satisfing $(a \cdot \mathbf{u} + b \cdot \mathbf{v}) \in V$ |
Existence of null element | $\exist\mathbf{0}\in V$ satisfying $\mathbf{u + 0 = u}$ |
Existence of additive inverse | $\exist(\mathbf{-u})\in V$ satisfying $\mathbf{u + (-u) = 0}$ |
Existence of scalar identity | $1 \cdot \mathbf{u} = \mathbf{u}$ |
Associativity of vector addition $(+)$ | $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ |
Associativity of scalar multiplication $(\cdot)$ | $(\alpha\beta)\cdot \mathbf{u} = \alpha \cdot(\beta\cdot\mathbf{u})$ |
Distributivity w.r.t. $\mathbb{R}$ | $(\alpha + \beta) \cdot \mathbf{u} = \alpha \cdot \mathbf{u} + \beta \cdot \mathbf{u}$ |
Distributivity w.r.t. $V$ | $\alpha \cdot (\mathbf{u} + \mathbf{v}) = \alpha \cdot \mathbf{u} + \alpha \cdot \mathbf{v}$ |
Commutativity of vector addition $(+)$ | $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ |
Description | Equations |
---|---|
Linear subspace | $U \sube V$ $\alpha\mathbf{u}_1 + \beta\mathbf{u}_2 \in U$ |
Linear independent | $\displaystyle\sum_{i}^N \alpha_i \mathbf{v}_i = 0 \iff \alpha_i = 0$ |
Finite dimensional | $V^n, \exist n \in \mathbb{Z}$ such that all linearly independent sets contain at most $n$ elements |
Basis | $\displaystyle\mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{b}_i$ |
Euclidean space $E^n$
Inner product
Definition of inner product | Equations |
---|---|
Commutativity of inner product $(\cdot)$ | $\mathbf{u \cdot v = v \cdot u}$ |
Distributivity of $(+)$ | $\mathbf{u \cdot (v + w) = u \cdot v + u \cdot w}$ |
Associativity of $(\cdot)$ | $(\alpha \mathbf{u})\cdot \mathbf{v} = \alpha (\mathbf{u \cdot v})$ |
Positive definite | $\mathbf{u \cdot u} \ge 0$ $\mathbf{u \cdot u} = 0 \iff \mathbf{u} = 0$ |
Description | Equations |
---|---|
Euclidean norm (magnitude) | $\vert\mathbf{u}\vert = \sqrt{\mathbf{u \cdot u}}$ |
Distance | $d(\mathbf{u, v}) \equiv \vert\mathbf{u \cdot v}\vert$ |
Orthogonal | $\mathbf{u \cdot v} = 0$ |
Orthonormal | $\mathbf{e}_1 \cdot \mathbf{e}_2 = \delta_{ij}$ |
Orthonormal basis | $\displaystyle\mathbf{v} = \sum_i^n \alpha_i \mathbf{e}_i$ |
Vector product
Definition of vector product | Equations |
---|---|
Negative commutativity | $\mathbf{u \times v = - v \times u}$ |
Triple product (Box product) |
$\mathbf{(u \times v) \cdot w = (v \times w) \cdot u = (w \times u) \cdot v}$ $\mathbf{[u, v, w] = [v, w, u] = [w, u, v]}$ |
Magnitude of vector product | $\lvert \mathbf{u \times v} \rvert = \lvert\mathbf{u}\rvert \lvert\mathbf{v}\rvert \sin\theta$ , where $\cos\theta = \dfrac{\mathbf{u \cdot v}}{\mathbf{\lvert u \rvert\lvert v \rvert}}$ |
Triple cross product | $\mathbf{u \times (v \times w) = (u \cdot w) v - (v \cdot u) w}$ |
Description | Equations |
---|---|
Self cross product | $\mathbf{u \times u = 0}$ |
Cross product is orthogonal to original vectors | $\mathbf{(u \times u) \cdot u} = 0$ $\mathbf{(u \times v) \cdot v} = 0$ |
Right-handed orthonormal basis | $\displaystyle\mathbf{e}_i \times \mathbf{e}_j = \sum_{i=1}^3 \varepsilon_{ijk} \mathbf{e}_k$ |
Vector product in tensor notation | $\displaystyle\mathbf{u} \times \mathbf{v} = \sum_{i=1}^3 \sum_{j=1}^3 u_i v_j \mathbf{e}_i \times \mathbf{e}_j$ |
Vector product in permutation notation | $\displaystyle\mathbf{u} \times \mathbf{v} = \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 u_i v_j\varepsilon_{ijk}\mathbf{e}_k$ |
Linear functions
Description | Equations |
---|---|
Vector-to-scalar function | $f: U \to R$ |
Vector-to-vector function | $\mathbf{f}: U \to V$ |
Linear function | $f(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = \alpha_1 f({\mathbf{v}_1}) + \alpha_2 f(\mathbf{v}_2)$ |
General form of linear function | $f(\mathbf{v}) = \mathbf{a \cdot v}$ |
Indicial notation
Description | Equations |
---|---|
Dummy index appears twice and summed | $\displaystyle u_i v_i \equiv \sum_{i=1}^3 u_i v_i = \mathbf{u \cdot v}$ |
Free index appears once and stacked | $\displaystyle v_{i} \equiv v_i \mathbf{e}_i = \sum_{i=1}^3 v_i \mathbf{e}_i = \begin{bmatrix}v_1 & v_2 & v_3\end{bmatrix}^T$ $\begin{aligned}\displaystyle V_{ij} \equiv V_{ij} \mathbf{e}_i \otimes \mathbf{e}_j = \sum_{i=1}^3 \sum_{j=1}^3 V_{ij} \mathbf{e}_i \otimes \mathbf{e}_j = \begin{bmatrix}V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33}\end{bmatrix}\end{aligned}$ |
No index appears more than twice | $\cancel{v_{iii}}$ $\cancel{v_i u_i w_i}$ |
Tensors
Description | Equations |
---|---|
Tensor | $\mathbf{A}$ in $\mathbf{f}(\mathbf{v}) = \mathbf{Av}$ |
Tensor (dyadic) product | $\mathbf{(a \otimes b) v \equiv (b \cdot v)a}$ |
Tensor (dyadic) product | $\mathbf{(a \otimes b)} = a_ib_j$ |
Tensor operations
Description | Equations |
---|---|
Transpose | $\mathbf{u \cdot T v \equiv v \cdot T}^T \mathbf{u}$ $T_{ij} = T_{ji}^T$ |
Tensor multiplication | $\mathbf{(TS)v \equiv T(Sv)}$ $\mathbf{TS} = T_{ik} S_{kj}$ |
Trace | $\mathrm{tr}(\mathbf{u \otimes v}) \equiv \mathbf{u \cdot v}$ $\mathrm{tr}(\mathbf{T}) = T_{ii} = \sum\mathrm{diag}(\mathbf{T})$ |
Contraction (Inner product, dot product) |
$\mathbf{T \cdot S} \equiv \mathrm{tr}(\mathbf{TS}^T)$ $\mathbf{T \cdot S} = T_{ij}S_{ij}$ |
Identity tensor | $\mathbf{Iv \equiv v}$ $\mathbf{I} = \delta_{ij}$ |
Zero tensor | $\mathbf{Ov = O}$ $\mathbf{O} = O_{ij}$ |
Symmetric | $\mathbf{T}^T = \mathbf{T}$ $T_{ij} = T_{ji}$ |
Skew-symmetric | $\mathbf{T}^T = -\mathbf{T}$ $T_{ij} = -T_{ji}$ |
Positive-definite | $\mathbf{v \cdot T v} \ge 0$ $\mathbf{v \cdot T v} = 0 \iff \mathbf{v = 0}$ |
Invertible | $\mathbf{Tv = w}$ uniquely determines $\mathbf{v} \implies \mathbf{v = T}^{-1}\mathbf{w}$ $\mathbf{TT}^{-1} = \mathbf{I}$ |
Orthogonal | $\mathbf{T}^T \mathbf{T} = \mathbf{T}\mathbf{T}^T = \mathbf{I}$ $\mathbf{T}^T = \mathbf{T}^{-1}$ |
Characteristic polynomial | $\begin{aligned}\det (\mathbf{T - \lambda I}) &= 0 \\ -\lambda^3 + I_1 \lambda^2 - I_2 \lambda + I_3 &= 0 \end{aligned}$ |
Eigenvalue | $\lambda$ |
Principal invariant 1 | $I_1 = \mathrm{tr}(\mathbf{T})$ |
Principal invariant 2 | $I_2 = \frac{1}{2}[\mathrm{tr}(\mathbf{T}^2) - \mathrm{tr}(\mathbf{T})^2]$ |
Principal invariant 3 | $I_3 = \det(\mathbf{T})$ |
Tensor properties
Description | Equations |
---|---|
Distributivity of transpose | $(\mathbf{T} + \mathbf{S})^T = \mathbf{S}^T + \mathbf{T}^T$ |
Transpose flips multiplication order | $(\mathbf{T}\mathbf{S})^T = \mathbf{S}^T \mathbf{T}^T$ |
Inverse flips multiplication order | $(\mathbf{T}\mathbf{S})^{-1} = \mathbf{S}^{-1}\mathbf{T}^{-1}$ |
Transpose-inverse | $\mathbf{T}^{-T} \equiv (\mathbf{T}^{-1})^T = (\mathbf{T}^{T})^{-1}$ |
Tensor calculus
Common functions
Description | Notation | Domain | Range |
---|---|---|---|
Scalar-to-scalar | $\phi_1(t)$ | $\mathbb{R}$ | $\mathbb{R}$ |
Vector-to-scalar | $\phi_2(\mathbf{x})$ | $E^3$ | $\mathbb{R}$ |
Multivariable scalar-valued | $\phi_3(\mathbf{x}, t)$ | $E^3 \times \mathbb{R}$ | $\mathbb{R}$ |
Scalar-to-vector | $\mathbf{v}_1(t)$ | $\mathbb{R}$ | $E^3$ |
Vector-to-vector | $\mathbf{v}_2(\mathbf{x})$ | $E^3$ | $E^3$ |
Multivariable vector-valued | $\mathbf{v}_3(\mathbf{x}, t)$ | $E^3 \times \mathbb{R}$ | $E^3$ |
Scalar-to-tensor | $\mathbf{T}_1(t)$ | $\mathbb{R}$ | $L(E^3, E^3)$ |
Vector-to-tensor | $\mathbf{T}_2(\mathbf{x})$ | $\mathbb{R}$ | $L(E^3, E^3)$ |
Multivariable tensor-valued | $\mathbf{T}_3(\mathbf{x}, t)$ | $E^3 \times \mathbb{R}$ | $L(E^3, E^3)$ |
Properties of functions
Description | Definition |
---|---|
Gradient of a scalar function | $[\mathrm{grad} \ \phi(\mathbf{x})] \cdot \mathbf{w} \equiv \left[\frac{d}{d\omega} \phi(\mathbf{x} + \omega \mathbf{w})\right]_{\omega = 0}$ |
Gradient of a vector function | $[\mathrm{grad} \ \mathbf{v}(\mathbf{x})] \mathbf{w} \equiv \left[\frac{d}{d\omega} \mathbf{v}(\mathbf{x} + \omega \mathbf{w})\right]_{\omega = 0}$ |
Divergence of a vector function | $\mathrm{div} \ \mathbf{v}(\mathbf{x}) \equiv \mathrm{tr}[\mathrm{grad} \ \mathbf{v}(\mathbf{x})]$ |
Divergence of a tensor function | $[\mathrm{div} \ \mathbf{T}(\mathbf{x})] \cdot \mathbf{w} \equiv \mathrm{div}[\mathbf{T}^T(\mathbf{x}) \mathbf{w}]$ |
Curl of a vector function | $[\mathrm{curl} \ \mathbf{v}(\mathbf{x})] \cdot \mathbf{w} \equiv \mathrm{div}(\mathbf{\mathbf{v}(x) \times w})$ |
Description | Expression in Orthonomal Coordinates |
---|---|
Gradient of a scalar function | $\mathrm{grad} \ \phi(\mathbf{x}) = \phi_{,i} \mathbf{e}_i$ |
Gradient of a vector function | $\mathrm{grad} \ \mathbf{v}(\mathbf{x}) = v_{i, j} \mathbf{e}_i \otimes \mathbf{e}_j$ |
Divergence of a vector function | $\mathrm{div} \ \mathbf{v}(\mathbf{x}) = v_{i, i}$ |
Divergence of a tensor function | $\mathrm{div} \ \mathbf{T}(\mathbf{x}) = T_{ji,i} \mathbf{e}_j = T_{ij,j} \mathbf{e}_i$ |
Curl of a vector function | $\mathrm{curl} \ \mathbf{v}(\mathbf{x}) = \varepsilon_{ijk}v_{j,i}\mathbf{e}_k$ |
Description | Domain | Range |
---|---|---|
Gradient of a scalar function | Scalar function | Vector function |
Gradient of a vector function $\mathrm{grad} = \nabla$ |
Vector function | Tensor function |
Divergence of a vector function | Vector function | Scalar |
Divergence of a tensor function $\mathrm{div} = \nabla\cdot$ |
Tensor function | Vector |
Curl of a vector function $\mathrm{curl} = \nabla \times$ |
Vector function | Vector function |
Tensor calculus identities
Description | Equations |
---|---|
- | $\mathrm{grad}(\phi\mathbf{v}) = \phi\mathrm{grad}(\mathbf{v}) + \mathbf{v} \otimes \mathrm{grad}(\phi)$ |
- | $\mathrm{div}(\phi\mathbf{v}) = \phi\mathrm{div}(\mathbf{v}) + \mathbf{v} \cdot \mathrm{grad}(\phi)$ |
- | $\mathrm{curl} [\mathrm{grad} (\phi)] = \mathbf{0}$ |
- | $\mathrm{div} [\mathrm{curl} (\mathbf{v})] = 0$ |
- | $\mathrm{grad}(\mathbf{v \cdot w}) = [\mathrm{grad} (\mathbf{v})]^T \mathbf{w} + [\mathrm{grad} (\mathbf{w})]^T \mathbf{v}$ |
- | $\mathrm{grad}[\mathrm{div}(\mathbf{v})] = \mathrm{div}[\mathrm{grad}(\mathbf{v})]^T$ |
- | $\mathrm{div}(\mathbf{v \otimes w}) = \mathrm{div}[\mathrm{grad}(\mathbf{v})]^T$ |
- | $\mathrm{curl}[\mathrm{curl}(\mathbf{v})] = \mathrm{grad}[\mathrm{div}(\mathbf{v})] - \mathrm{div}[\mathrm{grad}(\mathbf{v})]$ |
- | $\mathrm{div}(\mathbf{v \times w}) = \mathbf{w} \cdot \mathrm{curl}(\mathbf{v}) - \mathbf{v}\cdot \mathrm{curl}(\mathbf{w})$ |
- | $\mathrm{curl}(\mathbf{v \times w}) = \mathrm{div}(\mathbf{v \otimes w - w \otimes v})$ |
Misc properties
Description | Equations |
---|---|
Permutation symbol | $\varepsilon_{ijk} = \frac{1}{2}(i - j)(j - k)(k - i)$ |
Permutation symbol and Kronecker delta | $\varepsilon_{ijk} \varepsilon_{ijm} = 2 \delta_{km}$ |
$\varepsilon$-$\delta$ identity | $\varepsilon_{ijk}\varepsilon_{mnk} = \delta_{im}\delta_{jn} - \delta_{in}\delta_{jm}$ |
Determinant in permutation symbol | $\det(\mathbf{A}) = \begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix} =\varepsilon_{ijk} a_{1i}a_{2j}a_{3k}$ |
Dot product of basis vectors | $\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$ as a scalar |
Basis set of tensor | $\mathbf{e}_i \otimes \mathbf{e}_j = \delta_{ij}$ as a tensor |
Note that the notations depends on the context of the expression following the indicial notation. E.g. $\delta_{ij}$ could be a scalar or a tensor depending on the context of that it’s multiplied to.