Contents

CHM ENG 250 Transport Processes

Math “Review”

Notations

Description Equations
Zero-order tensor (Scalar) $(s) \in \mathbb{R}$
First-order tensor (Vector) $[\mathbf{v}] \in E^3$
Second-order tensor $\{ \mathbf{T} \} \in L(E^3, E^3)$
Partial derivatives $\phi_{,i} \equiv \dfrac{\partial \phi}{\partial x_i}$
Kronecker delta $\delta_{ij} = \begin{cases} 1 && i = j \\ 0 && i \not= j \end{cases}$
Permutation symbol
Levi-Civita symbol
$\varepsilon_{ijk} = \begin{cases} 1 & ijk = 123, 231, 312 \\ -1 & ijk = 321, 132, 213 \\ 0 & \text{otherwise (two indices alike)} \end{cases}$

Set theory

Description Equations
Integers $\mathbb{Z}$
Natural numbers $\mathbb{N}$
Real numbers $\mathbb{R}$
Element of (in) $x \in X$
Not element of (not in) $x \not\in X$
Subset $X \sube Y$
Proper subset $X \sub Y$
Union (or) $X \cup Y$
Intersection (and) $X \cap Y$
Empty set $\varnothing$
Cartesian product $X \times Y = \{(x, y) \ \vert\ x \in X, y \in Y\}$

Vector spaces

Vector spaces definitions

Definition of Vector Space $\{V, +; \mathbb{R}, \cdot\}$ Equations
Closure under linear combination $\mathbf{u} \in V$, $\mathbf{v} \in V$ satisfing $(a \cdot \mathbf{u} + b \cdot \mathbf{v}) \in V$
Existence of null element $\exist\mathbf{0}\in V$ satisfying $\mathbf{u + 0 = u}$
Existence of additive inverse $\exist(\mathbf{-u})\in V$ satisfying $\mathbf{u + (-u) = 0}$
Existence of scalar identity $1 \cdot \mathbf{u} = \mathbf{u}$
Associativity of vector addition $(+)$ $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
Associativity of scalar multiplication $(\cdot)$ $(\alpha\beta)\cdot \mathbf{u} = \alpha \cdot(\beta\cdot\mathbf{u})$
Distributivity w.r.t. $\mathbb{R}$ $(\alpha + \beta) \cdot \mathbf{u} = \alpha \cdot \mathbf{u} + \beta \cdot \mathbf{u}$
Distributivity w.r.t. $V$ $\alpha \cdot (\mathbf{u} + \mathbf{v}) = \alpha \cdot \mathbf{u} + \alpha \cdot \mathbf{v}$
Commutativity of vector addition $(+)$ $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
Description Equations
Linear subspace $U \sube V$
$\alpha\mathbf{u}_1 + \beta\mathbf{u}_2 \in U$
Linear independent $\displaystyle\sum_{i}^N \alpha_i \mathbf{v}_i = 0 \iff \alpha_i = 0$
Finite dimensional $V^n, \exist n \in \mathbb{Z}$ such that all linearly independent sets contain at most $n$ elements
Basis $\displaystyle\mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{b}_i$

Euclidean space $E^n$

Inner product
Definition of inner product Equations
Commutativity of inner product $(\cdot)$ $\mathbf{u \cdot v = v \cdot u}$
Distributivity of $(+)$ $\mathbf{u \cdot (v + w) = u \cdot v + u \cdot w}$
Associativity of $(\cdot)$ $(\alpha \mathbf{u})\cdot \mathbf{v} = \alpha (\mathbf{u \cdot v})$
Positive definite $\mathbf{u \cdot u} \ge 0$
$\mathbf{u \cdot u} = 0 \iff \mathbf{u} = 0$
Description Equations
Euclidean norm (magnitude) $\vert\mathbf{u}\vert = \sqrt{\mathbf{u \cdot u}}$
Distance $d(\mathbf{u, v}) \equiv \vert\mathbf{u \cdot v}\vert$
Orthogonal $\mathbf{u \cdot v} = 0$
Orthonormal $\mathbf{e}_1 \cdot \mathbf{e}_2 = \delta_{ij}$
Orthonormal basis $\displaystyle\mathbf{v} = \sum_i^n \alpha_i \mathbf{e}_i$
Vector product
Definition of vector product Equations
Negative commutativity $\mathbf{u \times v = - v \times u}$
Triple product
(Box product)
$\mathbf{(u \times v) \cdot w = (v \times w) \cdot u = (w \times u) \cdot v}$
$\mathbf{[u, v, w] = [v, w, u] = [w, u, v]}$
Magnitude of vector product $\lvert \mathbf{u \times v} \rvert = \lvert\mathbf{u}\rvert \lvert\mathbf{v}\rvert \sin\theta$ , where $\cos\theta = \dfrac{\mathbf{u \cdot v}}{\mathbf{\lvert u \rvert\lvert v \rvert}}$
Triple cross product $\mathbf{u \times (v \times w) = (u \cdot w) v - (v \cdot u) w}$
Description Equations
Self cross product $\mathbf{u \times u = 0}$
Cross product is orthogonal to original vectors $\mathbf{(u \times u) \cdot u} = 0$
$\mathbf{(u \times v) \cdot v} = 0$
Right-handed orthonormal basis $\displaystyle\mathbf{e}_i \times \mathbf{e}_j = \sum_{i=1}^3 \varepsilon_{ijk} \mathbf{e}_k$
Vector product in tensor notation $\displaystyle\mathbf{u} \times \mathbf{v} = \sum_{i=1}^3 \sum_{j=1}^3 u_i v_j \mathbf{e}_i \times \mathbf{e}_j$
Vector product in permutation notation $\displaystyle\mathbf{u} \times \mathbf{v} = \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 u_i v_j\varepsilon_{ijk}\mathbf{e}_k$

Linear functions

Description Equations
Vector-to-scalar function $f: U \to R$
Vector-to-vector function $\mathbf{f}: U \to V$
Linear function $f(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = \alpha_1 f({\mathbf{v}_1}) + \alpha_2 f(\mathbf{v}_2)$
General form of linear function $f(\mathbf{v}) = \mathbf{a \cdot v}$

Indicial notation

Description Equations
Dummy index appears twice and summed $\displaystyle u_i v_i \equiv \sum_{i=1}^3 u_i v_i = \mathbf{u \cdot v}$
Free index appears once and stacked $\displaystyle v_{i} \equiv v_i \mathbf{e}_i = \sum_{i=1}^3 v_i \mathbf{e}_i = \begin{bmatrix}v_1 & v_2 & v_3\end{bmatrix}^T$
$\begin{aligned}\displaystyle V_{ij} \equiv V_{ij} \mathbf{e}_i \otimes \mathbf{e}_j = \sum_{i=1}^3 \sum_{j=1}^3 V_{ij} \mathbf{e}_i \otimes \mathbf{e}_j = \begin{bmatrix}V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33}\end{bmatrix}\end{aligned}$
No index appears more than twice $\cancel{v_{iii}}$
$\cancel{v_i u_i w_i}$
All notations below follows Einstein's indicial notation.

Tensors

Description Equations
Tensor $\mathbf{A}$ in $\mathbf{f}(\mathbf{v}) = \mathbf{Av}$
Tensor (dyadic) product $\mathbf{(a \otimes b) v \equiv (b \cdot v)a}$
Tensor (dyadic) product $\mathbf{(a \otimes b)} = a_ib_j$
Tensor operations
Description Equations
Transpose $\mathbf{u \cdot T v \equiv v \cdot T}^T \mathbf{u}$
$T_{ij} = T_{ji}^T$
Tensor multiplication $\mathbf{(TS)v \equiv T(Sv)}$
$\mathbf{TS} = T_{ik} S_{kj}$
Trace $\mathrm{tr}(\mathbf{u \otimes v}) \equiv \mathbf{u \cdot v}$
$\mathrm{tr}(\mathbf{T}) = T_{ii} = \sum\mathrm{diag}(\mathbf{T})$
Contraction
(Inner product, dot product)
$\mathbf{T \cdot S} \equiv \mathrm{tr}(\mathbf{TS}^T)$
$\mathbf{T \cdot S} = T_{ij}S_{ij}$
Identity tensor $\mathbf{Iv \equiv v}$
$\mathbf{I} = \delta_{ij}$
Zero tensor $\mathbf{Ov = O}$
$\mathbf{O} = O_{ij}$
Symmetric $\mathbf{T}^T = \mathbf{T}$
$T_{ij} = T_{ji}$
Skew-symmetric $\mathbf{T}^T = -\mathbf{T}$
$T_{ij} = -T_{ji}$
Positive-definite $\mathbf{v \cdot T v} \ge 0$
$\mathbf{v \cdot T v} = 0 \iff \mathbf{v = 0}$
Invertible $\mathbf{Tv = w}$ uniquely determines $\mathbf{v} \implies \mathbf{v = T}^{-1}\mathbf{w}$
$\mathbf{TT}^{-1} = \mathbf{I}$
Orthogonal $\mathbf{T}^T \mathbf{T} = \mathbf{T}\mathbf{T}^T = \mathbf{I}$
$\mathbf{T}^T = \mathbf{T}^{-1}$
Characteristic polynomial $\begin{aligned}\det (\mathbf{T - \lambda I}) &= 0 \\ -\lambda^3 + I_1 \lambda^2 - I_2 \lambda + I_3 &= 0 \end{aligned}$
Eigenvalue $\lambda$
Principal invariant 1 $I_1 = \mathrm{tr}(\mathbf{T})$
Principal invariant 2 $I_2 = \frac{1}{2}[\mathrm{tr}(\mathbf{T}^2) - \mathrm{tr}(\mathbf{T})^2]$
Principal invariant 3 $I_3 = \det(\mathbf{T})$
Tensor properties
Description Equations
Distributivity of transpose $(\mathbf{T} + \mathbf{S})^T = \mathbf{S}^T + \mathbf{T}^T$
Transpose flips multiplication order $(\mathbf{T}\mathbf{S})^T = \mathbf{S}^T \mathbf{T}^T$
Inverse flips multiplication order $(\mathbf{T}\mathbf{S})^{-1} = \mathbf{S}^{-1}\mathbf{T}^{-1}$
Transpose-inverse $\mathbf{T}^{-T} \equiv (\mathbf{T}^{-1})^T = (\mathbf{T}^{T})^{-1}$

Tensor calculus

Common functions

Description Notation Domain Range
Scalar-to-scalar $\phi_1(t)$ $\mathbb{R}$ $\mathbb{R}$
Vector-to-scalar $\phi_2(\mathbf{x})$ $E^3$ $\mathbb{R}$
Multivariable scalar-valued $\phi_3(\mathbf{x}, t)$ $E^3 \times \mathbb{R}$ $\mathbb{R}$
Scalar-to-vector $\mathbf{v}_1(t)$ $\mathbb{R}$ $E^3$
Vector-to-vector $\mathbf{v}_2(\mathbf{x})$ $E^3$ $E^3$
Multivariable vector-valued $\mathbf{v}_3(\mathbf{x}, t)$ $E^3 \times \mathbb{R}$ $E^3$
Scalar-to-tensor $\mathbf{T}_1(t)$ $\mathbb{R}$ $L(E^3, E^3)$
Vector-to-tensor $\mathbf{T}_2(\mathbf{x})$ $\mathbb{R}$ $L(E^3, E^3)$
Multivariable tensor-valued $\mathbf{T}_3(\mathbf{x}, t)$ $E^3 \times \mathbb{R}$ $L(E^3, E^3)$

Properties of functions

Description Definition
Gradient of a scalar function $[\mathrm{grad} \ \phi(\mathbf{x})] \cdot \mathbf{w} \equiv \left[\frac{d}{d\omega} \phi(\mathbf{x} + \omega \mathbf{w})\right]_{\omega = 0}$
Gradient of a vector function $[\mathrm{grad} \ \mathbf{v}(\mathbf{x})] \mathbf{w} \equiv \left[\frac{d}{d\omega} \mathbf{v}(\mathbf{x} + \omega \mathbf{w})\right]_{\omega = 0}$
Divergence of a vector function $\mathrm{div} \ \mathbf{v}(\mathbf{x}) \equiv \mathrm{tr}[\mathrm{grad} \ \mathbf{v}(\mathbf{x})]$
Divergence of a tensor function $[\mathrm{div} \ \mathbf{T}(\mathbf{x})] \cdot \mathbf{w} \equiv \mathrm{div}[\mathbf{T}^T(\mathbf{x}) \mathbf{w}]$
Curl of a vector function $[\mathrm{curl} \ \mathbf{v}(\mathbf{x})] \cdot \mathbf{w} \equiv \mathrm{div}(\mathbf{\mathbf{v}(x) \times w})$
Description Expression in Orthonomal Coordinates
Gradient of a scalar function $\mathrm{grad} \ \phi(\mathbf{x}) = \phi_{,i} \mathbf{e}_i$
Gradient of a vector function $\mathrm{grad} \ \mathbf{v}(\mathbf{x}) = v_{i, j} \mathbf{e}_i \otimes \mathbf{e}_j$
Divergence of a vector function $\mathrm{div} \ \mathbf{v}(\mathbf{x}) = v_{i, i}$
Divergence of a tensor function $\mathrm{div} \ \mathbf{T}(\mathbf{x}) = T_{ji,i} \mathbf{e}_j = T_{ij,j} \mathbf{e}_i$
Curl of a vector function $\mathrm{curl} \ \mathbf{v}(\mathbf{x}) = \varepsilon_{ijk}v_{j,i}\mathbf{e}_k$
Description Domain Range
Gradient of a scalar function Scalar function Vector function
Gradient of a vector function
$\mathrm{grad} = \nabla$
Vector function Tensor function
Divergence of a vector function Vector function Scalar
Divergence of a tensor function
$\mathrm{div} = \nabla\cdot$
Tensor function Vector
Curl of a vector function
$\mathrm{curl} = \nabla \times$
Vector function Vector function

Tensor calculus identities

Description Equations
- $\mathrm{grad}(\phi\mathbf{v}) = \phi\mathrm{grad}(\mathbf{v}) + \mathbf{v} \otimes \mathrm{grad}(\phi)$
- $\mathrm{div}(\phi\mathbf{v}) = \phi\mathrm{div}(\mathbf{v}) + \mathbf{v} \cdot \mathrm{grad}(\phi)$
- $\mathrm{curl} [\mathrm{grad} (\phi)] = \mathbf{0}$
- $\mathrm{div} [\mathrm{curl} (\mathbf{v})] = 0$
- $\mathrm{grad}(\mathbf{v \cdot w}) = [\mathrm{grad} (\mathbf{v})]^T \mathbf{w} + [\mathrm{grad} (\mathbf{w})]^T \mathbf{v}$
- $\mathrm{grad}[\mathrm{div}(\mathbf{v})] = \mathrm{div}[\mathrm{grad}(\mathbf{v})]^T$
- $\mathrm{div}(\mathbf{v \otimes w}) = \mathrm{div}[\mathrm{grad}(\mathbf{v})]^T$
- $\mathrm{curl}[\mathrm{curl}(\mathbf{v})] = \mathrm{grad}[\mathrm{div}(\mathbf{v})] - \mathrm{div}[\mathrm{grad}(\mathbf{v})]$
- $\mathrm{div}(\mathbf{v \times w}) = \mathbf{w} \cdot \mathrm{curl}(\mathbf{v}) - \mathbf{v}\cdot \mathrm{curl}(\mathbf{w})$
- $\mathrm{curl}(\mathbf{v \times w}) = \mathrm{div}(\mathbf{v \otimes w - w \otimes v})$

Misc properties

Description Equations
Permutation symbol $\varepsilon_{ijk} = \frac{1}{2}(i - j)(j - k)(k - i)$
Permutation symbol and Kronecker delta $\varepsilon_{ijk} \varepsilon_{ijm} = 2 \delta_{km}$
$\varepsilon$-$\delta$ identity $\varepsilon_{ijk}\varepsilon_{mnk} = \delta_{im}\delta_{jn} - \delta_{in}\delta_{jm}$
Determinant in permutation symbol $\det(\mathbf{A}) = \begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix} =\varepsilon_{ijk} a_{1i}a_{2j}a_{3k}$
Dot product of basis vectors $\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$ as a scalar
Basis set of tensor $\mathbf{e}_i \otimes \mathbf{e}_j = \delta_{ij}$ as a tensor

Note that the notations depends on the context of the expression following the indicial notation. E.g. $\delta_{ij}$ could be a scalar or a tensor depending on the context of that it’s multiplied to.

Kinematics