CHM ENG 250 Transport Processes

Contents
Description Equations
Zero-order tensor (Scalar) (s)R(s) \in \mathbb{R}
First-order tensor (Vector) [v]E3[\mathbf{v}] \in E^3
Second-order tensor {T}L(E3,E3)\{ \mathbf{T} \} \in L(E^3, E^3)
Partial derivatives ϕ,iϕxi\phi_{,i} \equiv \dfrac{\partial \phi}{\partial x_i}
Kronecker delta δij={1i=j0ij\delta_{ij} = \begin{cases} 1 && i = j \\ 0 && i \not= j \end{cases}
Permutation symbol
Levi-Civita symbol
εijk={1ijk=123,231,3121ijk=321,132,2130otherwise (two indices alike)\varepsilon_{ijk} = \begin{cases} 1 & ijk = 123, 231, 312 \\ -1 & ijk = 321, 132, 213 \\ 0 & \text{otherwise (two indices alike)} \end{cases}
Description Equations
Integers Z\mathbb{Z}
Natural numbers N\mathbb{N}
Real numbers R\mathbb{R}
Element of (in) xXx \in X
Not element of (not in) x∉Xx \not\in X
Subset XYX \sube Y
Proper subset XYX \sub Y
Union (or) XYX \cup Y
Intersection (and) XYX \cap Y
Empty set \varnothing
Cartesian product X×Y={(x,y)  xX,yY}X \times Y = \{(x, y) \ \vert\ x \in X, y \in Y\}
Definition of Vector Space {V,+;R,}\{V, +; \mathbb{R}, \cdot\} Equations
Closure under linear combination uV\mathbf{u} \in V, vV\mathbf{v} \in V satisfing (au+bv)V(a \cdot \mathbf{u} + b \cdot \mathbf{v}) \in V
Existence of null element 0V\exist\mathbf{0}\in V satisfying u+0=u\mathbf{u + 0 = u}
Existence of additive inverse (u)V\exist(\mathbf{-u})\in V satisfying u+(u)=0\mathbf{u + (-u) = 0}
Existence of scalar identity 1u=u1 \cdot \mathbf{u} = \mathbf{u}
Associativity of vector addition (+)(+) (u+v)+w=u+(v+w)(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})
Associativity of scalar multiplication ()(\cdot) (αβ)u=α(βu)(\alpha\beta)\cdot \mathbf{u} = \alpha \cdot(\beta\cdot\mathbf{u})
Distributivity w.r.t. R\mathbb{R} (α+β)u=αu+βu(\alpha + \beta) \cdot \mathbf{u} = \alpha \cdot \mathbf{u} + \beta \cdot \mathbf{u}
Distributivity w.r.t. VV α(u+v)=αu+αv\alpha \cdot (\mathbf{u} + \mathbf{v}) = \alpha \cdot \mathbf{u} + \alpha \cdot \mathbf{v}
Commutativity of vector addition (+)(+) u+v=v+u\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}
Description Equations
Linear subspace UVU \sube V
αu1+βu2U\alpha\mathbf{u}_1 + \beta\mathbf{u}_2 \in U
Linear independent iNαivi=0    αi=0\displaystyle\sum_{i}^N \alpha_i \mathbf{v}_i = 0 \iff \alpha_i = 0
Finite dimensional Vn,nZV^n, \exist n \in \mathbb{Z} such that all linearly independent sets contain at most nn elements
Basis v=i=1nαibi\displaystyle\mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{b}_i
Definition of inner product Equations
Commutativity of inner product ()(\cdot) uv=vu\mathbf{u \cdot v = v \cdot u}
Distributivity of (+)(+) u(v+w)=uv+uw\mathbf{u \cdot (v + w) = u \cdot v + u \cdot w}
Associativity of ()(\cdot) (αu)v=α(uv)(\alpha \mathbf{u})\cdot \mathbf{v} = \alpha (\mathbf{u \cdot v})
Positive definite uu0\mathbf{u \cdot u} \ge 0
uu=0    u=0\mathbf{u \cdot u} = 0 \iff \mathbf{u} = 0
Description Equations
Euclidean norm (magnitude) u=uu\vert\mathbf{u}\vert = \sqrt{\mathbf{u \cdot u}}
Distance d(u,v)uvd(\mathbf{u, v}) \equiv \vert\mathbf{u \cdot v}\vert
Orthogonal uv=0\mathbf{u \cdot v} = 0
Orthonormal e1e2=δij\mathbf{e}_1 \cdot \mathbf{e}_2 = \delta_{ij}
Orthonormal basis v=inαiei\displaystyle\mathbf{v} = \sum_i^n \alpha_i \mathbf{e}_i
Definition of vector product Equations
Negative commutativity u×v=v×u\mathbf{u \times v = - v \times u}
Triple product
(Box product)
(u×v)w=(v×w)u=(w×u)v\mathbf{(u \times v) \cdot w = (v \times w) \cdot u = (w \times u) \cdot v}
[u,v,w]=[v,w,u]=[w,u,v]\mathbf{[u, v, w] = [v, w, u] = [w, u, v]}
Magnitude of vector product u×v=uvsinθ\lvert \mathbf{u \times v} \rvert = \lvert\mathbf{u}\rvert \lvert\mathbf{v}\rvert \sin\theta , where cosθ=uvuv\cos\theta = \dfrac{\mathbf{u \cdot v}}{\mathbf{\lvert u \rvert\lvert v \rvert}}
Triple cross product u×(v×w)=(uw)v(vu)w\mathbf{u \times (v \times w) = (u \cdot w) v - (v \cdot u) w}
Description Equations
Self cross product u×u=0\mathbf{u \times u = 0}
Cross product is orthogonal to original vectors (u×u)u=0\mathbf{(u \times u) \cdot u} = 0
(u×v)v=0\mathbf{(u \times v) \cdot v} = 0
Right-handed orthonormal basis ei×ej=i=13εijkek\displaystyle\mathbf{e}_i \times \mathbf{e}_j = \sum_{i=1}^3 \varepsilon_{ijk} \mathbf{e}_k
Vector product in tensor notation u×v=i=13j=13uivjei×ej\displaystyle\mathbf{u} \times \mathbf{v} = \sum_{i=1}^3 \sum_{j=1}^3 u_i v_j \mathbf{e}_i \times \mathbf{e}_j
Vector product in permutation notation u×v=i=13j=13k=13uivjεijkek\displaystyle\mathbf{u} \times \mathbf{v} = \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 u_i v_j\varepsilon_{ijk}\mathbf{e}_k
Description Equations
Vector-to-scalar function f:URf: U \to R
Vector-to-vector function f:UV\mathbf{f}: U \to V
Linear function f(α1v1+α2v2)=α1f(v1)+α2f(v2)f(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = \alpha_1 f({\mathbf{v}_1}) + \alpha_2 f(\mathbf{v}_2)
General form of linear function f(v)=avf(\mathbf{v}) = \mathbf{a \cdot v}
Description Equations
Dummy index appears twice and summed uivii=13uivi=uv\displaystyle u_i v_i \equiv \sum_{i=1}^3 u_i v_i = \mathbf{u \cdot v}
Free index appears once and stacked viviei=i=13viei=[v1v2v3]T\displaystyle v_{i} \equiv v_i \mathbf{e}_i = \sum_{i=1}^3 v_i \mathbf{e}_i = \begin{bmatrix}v_1 & v_2 & v_3\end{bmatrix}^T
VijVijeiej=i=13j=13Vijeiej=[V11V12V13V21V22V23V31V32V33]\begin{aligned}\displaystyle V_{ij} \equiv V_{ij} \mathbf{e}_i \otimes \mathbf{e}_j = \sum_{i=1}^3 \sum_{j=1}^3 V_{ij} \mathbf{e}_i \otimes \mathbf{e}_j = \begin{bmatrix}V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33}\end{bmatrix}\end{aligned}
No index appears more than twice viii\cancel{v_{iii}}
viuiwi\cancel{v_i u_i w_i}
All notations below follows Einstein's indicial notation.
Description Equations
Tensor A\mathbf{A} in f(v)=Av\mathbf{f}(\mathbf{v}) = \mathbf{Av}
Tensor (dyadic) product (ab)v(bv)a\mathbf{(a \otimes b) v \equiv (b \cdot v)a}
Tensor (dyadic) product (ab)=aibj\mathbf{(a \otimes b)} = a_ib_j
Description Equations
Transpose uTvvTTu\mathbf{u \cdot T v \equiv v \cdot T}^T \mathbf{u}
Tij=TjiTT_{ij} = T_{ji}^T
Tensor multiplication (TS)vT(Sv)\mathbf{(TS)v \equiv T(Sv)}
TS=TikSkj\mathbf{TS} = T_{ik} S_{kj}
Trace tr(uv)uv\mathrm{tr}(\mathbf{u \otimes v}) \equiv \mathbf{u \cdot v}
tr(T)=Tii=diag(T)\mathrm{tr}(\mathbf{T}) = T_{ii} = \sum\mathrm{diag}(\mathbf{T})
Contraction
(Inner product, dot product)
TStr(TST)\mathbf{T \cdot S} \equiv \mathrm{tr}(\mathbf{TS}^T)
TS=TijSij\mathbf{T \cdot S} = T_{ij}S_{ij}
Identity tensor Ivv\mathbf{Iv \equiv v}
I=δij\mathbf{I} = \delta_{ij}
Zero tensor Ov=O\mathbf{Ov = O}
O=Oij\mathbf{O} = O_{ij}
Symmetric TT=T\mathbf{T}^T = \mathbf{T}
Tij=TjiT_{ij} = T_{ji}
Skew-symmetric TT=T\mathbf{T}^T = -\mathbf{T}
Tij=TjiT_{ij} = -T_{ji}
Positive-definite vTv0\mathbf{v \cdot T v} \ge 0
vTv=0    v=0\mathbf{v \cdot T v} = 0 \iff \mathbf{v = 0}
Invertible Tv=w\mathbf{Tv = w} uniquely determines v    v=T1w\mathbf{v} \implies \mathbf{v = T}^{-1}\mathbf{w}
TT1=I\mathbf{TT}^{-1} = \mathbf{I}
Orthogonal TTT=TTT=I\mathbf{T}^T \mathbf{T} = \mathbf{T}\mathbf{T}^T = \mathbf{I}
TT=T1\mathbf{T}^T = \mathbf{T}^{-1}
Characteristic polynomial det(TλI)=0λ3+I1λ2I2λ+I3=0\begin{aligned}\det (\mathbf{T - \lambda I}) &= 0 \\ -\lambda^3 + I_1 \lambda^2 - I_2 \lambda + I_3 &= 0 \end{aligned}
Eigenvalue λ\lambda
Principal invariant 1 I1=tr(T)I_1 = \mathrm{tr}(\mathbf{T})
Principal invariant 2 I2=12[tr(T2)tr(T)2]I_2 = \frac{1}{2}[\mathrm{tr}(\mathbf{T}^2) - \mathrm{tr}(\mathbf{T})^2]
Principal invariant 3 I3=det(T)I_3 = \det(\mathbf{T})
Description Equations
Distributivity of transpose (T+S)T=ST+TT(\mathbf{T} + \mathbf{S})^T = \mathbf{S}^T + \mathbf{T}^T
Transpose flips multiplication order (TS)T=STTT(\mathbf{T}\mathbf{S})^T = \mathbf{S}^T \mathbf{T}^T
Inverse flips multiplication order (TS)1=S1T1(\mathbf{T}\mathbf{S})^{-1} = \mathbf{S}^{-1}\mathbf{T}^{-1}
Transpose-inverse TT(T1)T=(TT)1\mathbf{T}^{-T} \equiv (\mathbf{T}^{-1})^T = (\mathbf{T}^{T})^{-1}
Description Notation Domain Range
Scalar-to-scalar ϕ1(t)\phi_1(t) R\mathbb{R} R\mathbb{R}
Vector-to-scalar ϕ2(x)\phi_2(\mathbf{x}) E3E^3 R\mathbb{R}
Multivariable scalar-valued ϕ3(x,t)\phi_3(\mathbf{x}, t) E3×RE^3 \times \mathbb{R} R\mathbb{R}
Scalar-to-vector v1(t)\mathbf{v}_1(t) R\mathbb{R} E3E^3
Vector-to-vector v2(x)\mathbf{v}_2(\mathbf{x}) E3E^3 E3E^3
Multivariable vector-valued v3(x,t)\mathbf{v}_3(\mathbf{x}, t) E3×RE^3 \times \mathbb{R} E3E^3
Scalar-to-tensor T1(t)\mathbf{T}_1(t) R\mathbb{R} L(E3,E3)L(E^3, E^3)
Vector-to-tensor T2(x)\mathbf{T}_2(\mathbf{x}) R\mathbb{R} L(E3,E3)L(E^3, E^3)
Multivariable tensor-valued T3(x,t)\mathbf{T}_3(\mathbf{x}, t) E3×RE^3 \times \mathbb{R} L(E3,E3)L(E^3, E^3)
Description Definition
Gradient of a scalar function [grad ϕ(x)]w[ddωϕ(x+ωw)]ω=0[\mathrm{grad} \ \phi(\mathbf{x})] \cdot \mathbf{w} \equiv \left[\frac{d}{d\omega} \phi(\mathbf{x} + \omega \mathbf{w})\right]_{\omega = 0}
Gradient of a vector function [grad v(x)]w[ddωv(x+ωw)]ω=0[\mathrm{grad} \ \mathbf{v}(\mathbf{x})] \mathbf{w} \equiv \left[\frac{d}{d\omega} \mathbf{v}(\mathbf{x} + \omega \mathbf{w})\right]_{\omega = 0}
Divergence of a vector function div v(x)tr[grad v(x)]\mathrm{div} \ \mathbf{v}(\mathbf{x}) \equiv \mathrm{tr}[\mathrm{grad} \ \mathbf{v}(\mathbf{x})]
Divergence of a tensor function [div T(x)]wdiv[TT(x)w][\mathrm{div} \ \mathbf{T}(\mathbf{x})] \cdot \mathbf{w} \equiv \mathrm{div}[\mathbf{T}^T(\mathbf{x}) \mathbf{w}]
Curl of a vector function [curl v(x)]wdiv(v(x)×w)[\mathrm{curl} \ \mathbf{v}(\mathbf{x})] \cdot \mathbf{w} \equiv \mathrm{div}(\mathbf{\mathbf{v}(x) \times w})
Description Expression in Orthonomal Coordinates
Gradient of a scalar function grad ϕ(x)=ϕ,iei\mathrm{grad} \ \phi(\mathbf{x}) = \phi_{,i} \mathbf{e}_i
Gradient of a vector function grad v(x)=vi,jeiej\mathrm{grad} \ \mathbf{v}(\mathbf{x}) = v_{i, j} \mathbf{e}_i \otimes \mathbf{e}_j
Divergence of a vector function div v(x)=vi,i\mathrm{div} \ \mathbf{v}(\mathbf{x}) = v_{i, i}
Divergence of a tensor function div T(x)=Tji,iej=Tij,jei\mathrm{div} \ \mathbf{T}(\mathbf{x}) = T_{ji,i} \mathbf{e}_j = T_{ij,j} \mathbf{e}_i
Curl of a vector function curl v(x)=εijkvj,iek\mathrm{curl} \ \mathbf{v}(\mathbf{x}) = \varepsilon_{ijk}v_{j,i}\mathbf{e}_k
Description Domain Range
Gradient of a scalar function Scalar function Vector function
Gradient of a vector function
grad=\mathrm{grad} = \nabla
Vector function Tensor function
Divergence of a vector function Vector function Scalar
Divergence of a tensor function
div=\mathrm{div} = \nabla\cdot
Tensor function Vector
Curl of a vector function
curl=×\mathrm{curl} = \nabla \times
Vector function Vector function
Description Equations
- grad(ϕv)=ϕgrad(v)+vgrad(ϕ)\mathrm{grad}(\phi\mathbf{v}) = \phi\mathrm{grad}(\mathbf{v}) + \mathbf{v} \otimes \mathrm{grad}(\phi)
- div(ϕv)=ϕdiv(v)+vgrad(ϕ)\mathrm{div}(\phi\mathbf{v}) = \phi\mathrm{div}(\mathbf{v}) + \mathbf{v} \cdot \mathrm{grad}(\phi)
- curl[grad(ϕ)]=0\mathrm{curl} [\mathrm{grad} (\phi)] = \mathbf{0}
- div[curl(v)]=0\mathrm{div} [\mathrm{curl} (\mathbf{v})] = 0
- grad(vw)=[grad(v)]Tw+[grad(w)]Tv\mathrm{grad}(\mathbf{v \cdot w}) = [\mathrm{grad} (\mathbf{v})]^T \mathbf{w} + [\mathrm{grad} (\mathbf{w})]^T \mathbf{v}
- grad[div(v)]=div[grad(v)]T\mathrm{grad}[\mathrm{div}(\mathbf{v})] = \mathrm{div}[\mathrm{grad}(\mathbf{v})]^T
- div(vw)=div[grad(v)]T\mathrm{div}(\mathbf{v \otimes w}) = \mathrm{div}[\mathrm{grad}(\mathbf{v})]^T
- curl[curl(v)]=grad[div(v)]div[grad(v)]\mathrm{curl}[\mathrm{curl}(\mathbf{v})] = \mathrm{grad}[\mathrm{div}(\mathbf{v})] - \mathrm{div}[\mathrm{grad}(\mathbf{v})]
- div(v×w)=wcurl(v)vcurl(w)\mathrm{div}(\mathbf{v \times w}) = \mathbf{w} \cdot \mathrm{curl}(\mathbf{v}) - \mathbf{v}\cdot \mathrm{curl}(\mathbf{w})
- curl(v×w)=div(vwwv)\mathrm{curl}(\mathbf{v \times w}) = \mathrm{div}(\mathbf{v \otimes w - w \otimes v})
Description Equations
Permutation symbol εijk=12(ij)(jk)(ki)\varepsilon_{ijk} = \frac{1}{2}(i - j)(j - k)(k - i)
Permutation symbol and Kronecker delta εijkεijm=2δkm\varepsilon_{ijk} \varepsilon_{ijm} = 2 \delta_{km}
ε\varepsilon-δ\delta identity εijkεmnk=δimδjnδinδjm\varepsilon_{ijk}\varepsilon_{mnk} = \delta_{im}\delta_{jn} - \delta_{in}\delta_{jm}
Determinant in permutation symbol det(A)=a11a12a13a21a22a23a31a32a33=εijka1ia2ja3k\det(\mathbf{A}) = \begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix} =\varepsilon_{ijk} a_{1i}a_{2j}a_{3k}
Dot product of basis vectors eiej=δij\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij} as a scalar
Basis set of tensor eiej=δij\mathbf{e}_i \otimes \mathbf{e}_j = \delta_{ij} as a tensor

Note that the notations depends on the context of the expression following the indicial notation. E.g. δij\delta_{ij} could be a scalar or a tensor depending on the context of that it’s multiplied to.