CHEM E 467 Biochemical Engineering

Contents
Description Equations
Arrhenius equation k=Aexp(EART)k = A\exp\left(\dfrac{E_A}{RT}\right)
Power law rP=kCiνir_P = k\prod C_i^{\nu_i}
Linearized 1st order rate law ln([A][A]0)kt\ln\left(\dfrac{[A]}{[A]_0}\right) -kt
Description Equations
Overall reaction E+SE+P\ce{E + S -> E + P}
Reaction mechanism S+EkX1kX1ESESkX2P+E\ce{S + E <=>[\mathit{k}_1][\mathit{k}_{-1}] ES} \newline \ce{ES ->[\mathit{k}_{2}] P + E}
Enzyme balance [EXT]=[E]+[ES][E]=[EXT][ES]\ce{[E_T] = [E] + [ES]} \newline \ce{[E] = [E_T] - [ES]}
Pseudo-steady-state approximation rES=k1[S][E]k1[ES]k2[ES]=0rES=k1[S]([EXT][ES])k1[ES]k2[ES]=0[ES]=k1[S][EXT]k1[S]+k1+k2=[EXT][S]KM+[S]\begin{aligned}r_{\ce{ES}} &= k_1\ce{[S][E]} - k_{-1} \ce{[ES]} - k_2 \ce{[ES]} = 0 \\ r_{\ce{ES}} &= k_1\ce{[S]([E_T] - [ES])} - k_{-1} \ce{[ES]} - k_2 \ce{[ES]} = 0 \end{aligned} \newline \ce{[ES]} = \dfrac{k_1 \ce{[S][E_T]}}{k_1 \ce{[S]} + k_{-1} + k_2} = \dfrac{\ce{[E_T][S]}}{K_M + \ce{[S]}}
Turnover number (# substrates converted to product per unit time on one enzyme at saturation) kcat=k2k_{\mathrm{cat}} = k_2
Michaelis-Menten constant (attraction of enzyme of its substrate, [Substrate] which rate of rxn is 1/2 max) KM=kcat+k1k1K_M = \dfrac{k_{\mathrm{cat}} + k_{-1}}{k_1}
Maximum rate Vmax=kcat[EXT]V_{\max} = k_{\mathrm{cat}} \ce{[E_T]}
Michaelis-Menten equation
Rate of reaction
rP=k2[ES]=k1k2[S][EXT]k1[S]+k1+k2=kcat[S][EXT]KM+[S]=Vmax[S]KM+[S]\begin{aligned}r_{\ce{P}} &= k_{2} \ce{[ES]} \\ &= \dfrac{k_1 k_{2} \ce{[S][E_T]}}{k_1 \ce{[S]} + k_{-1} + k_2} \\ &= \dfrac{k_{\mathrm{cat}} \ce{[S][E_T]}}{K_M + \ce{[S]}} \\ &= \dfrac{V_{\max} \ce{[S]}}{K_M + \ce{[S]}} \end{aligned}
Lineweaver-Burk equation 1rP=KMVmax1[S]+1Vmax\dfrac{1}{r_{\ce{P}}} = \dfrac{K_M}{V_{\max}}\dfrac{1}{\ce{[S]}} + \dfrac{1}{V_{\max}}
Eadie-Hofstee equation rP=VmaxKMrP[S]r_{\ce{P}} = V_{\max} - K_M\dfrac{r_{\ce{P}}}{\ce{[S]}}
Hanes-Woolf equation [S]rP=KMVmax+1Vmax[S]\dfrac{\ce{[S]}}{r_{\ce{P}}} = \dfrac{K_M}{V_{\max}} + \dfrac{1}{V_{\max}}\ce{[S]}
Description Equations
Reaction mechanism E+SESESE+PE+IEI (inactive)\ce{E + S <=> ES} \newline \ce{ES -> E + P} \newline \ce{E + I <=> EI} \text{ (inactive)}
Reaction rate rP=Vmax[S][S]+KM[1+[I]KI]r_{\ce{P}} = \dfrac{V_{\max}\ce{[S]}}{\ce{[S]} + K_M \left[1 + \dfrac{\ce{[I]}}{K_I}\right]}
Lineweaver-Burk form
KI,slope\uparrow K_I, \uparrow \text{slope}
1rP=1[S][KMVmax[1+[I]KI]]+1Vmax\dfrac{1}{r_{\ce{P}}} = \dfrac{1}{\ce{[S]}} \left[\dfrac{K_M}{V_{\max}} \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right] \right] + \dfrac{1}{V_{\max}}
Description Equations
Reaction mechanism E+SESESE+PES+IESI (inactive)\ce{E + S <=> ES} \newline \ce{ES -> E + P} \newline \ce{ES + I <=> ESI} \text{ (inactive)}
Reaction rate rP=Vmax[S]KM+[S][1+[I]KI]r_{\ce{P}} = \dfrac{V_{\max}\ce{[S]}}{K_M + \ce{[S]} \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right]}
Lineweaver-Burk form
KI,intercept\uparrow K_I, \uparrow \text{intercept}
1rP=1[S]KMVmax+1Vmax[1+[I]KI]\dfrac{1}{r_{\ce{P}}} = \dfrac{1}{\ce{[S]}} \dfrac{K_M}{V_{\max}} + \dfrac{1}{V_{\max}} \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right]
Description Equations
Reaction mechanism E+SESESE+PE+IEI (inactive)ES+IESI (inactive)S+EIESI (inactive)\ce{E + S <=> ES} \newline \ce{ES -> E + P} \newline \ce{E + I <=> EI} \text{ (inactive)} \newline \ce{ES + I <=> ESI} \text{ (inactive)} \newline \ce{S + EI <=> ESI} \text{ (inactive)}
Reaction rate rP=Vmax[S]([S]+KM)[1+[I]KI]r_{\ce{P}} = \dfrac{V_{\max}\ce{[S]}}{(\ce{[S]} + K_M) \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right]}
Lineweaver-Burk form
KI,slope,intercept\uparrow K_I, \uparrow \text{slope}, \uparrow \text{intercept}
1rP=1[S]KMVmax[1+[I]KI]+1Vmax[1+[I]KI]\dfrac{1}{r_{\ce{P}}} = \dfrac{1}{\ce{[S]}} \dfrac{K_M}{V_{\max}} \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right] + \dfrac{1}{V_{\max}} \left[ 1 + \dfrac{\ce{[I]}}{K_I}\right]
Description Equations
Nomenclature SS = substrate mass
PP = product mass
XX = cell mass
Mass balance ΔS+ΔP=ΔX\Delta S + \Delta P = \Delta X
Yield coefficient (mass basis) YX/S=ΔXΔS=[X][X]0[S]0[S]Y_{X/S} = -\dfrac{\Delta X}{\Delta S} = \dfrac{[X] - [X]_0}{[S]_0 - [S]}
Exponential growth [X]=[X]0exp(μmaxt)[X] = [X]_0 \exp(\mu_{\max}t)
Doubling time td=ln2μt_d = \dfrac{\ln 2}{\mu}
Exponential death [X]=[X]0exp(kdt)[X] = [X]_0 \exp(-k_d t)
Optical density (absorbance) ODλ=Aλ=logII0\mathrm{OD}_\lambda = A_\lambda = \log \dfrac{I}{I_0}
Description Equations
Cell reaction CXwHXxOXyNXz+aOX2+bNHX3cCHXαOXβNXδ +dCOX2+eHX2O+fCXjHXkOXlNXm\ce{C_wH_xO_yN_z + a O_2 + b NH_3} \newline \ce{-> c CH_\alpha O_\beta N_\delta\ + d CO_2 + e H_2O + f C_jH_kO_lN_m}
Respiratory quotient RQ=mol COX2 producedmol OX2 consumed=da\mathrm{RQ} = \dfrac{\text{mol } \ce{CO2} \text{ produced}}{\text{mol } \ce{O2} \text{ consumed}} = \dfrac{d}{a}
Biomass yield (mass basis) YX/S=ΔXΔS=g cellg substrateY_{X/S} = \dfrac{\Delta X}{\Delta S} = \dfrac{\text{g cell}}{\text{g substrate}}
Product yield (mass basis) YP/S=ΔPΔS=g productg substrateY_{P/S} = \dfrac{\Delta P}{\Delta S} = \dfrac{\text{g product}}{\text{g substrate}}
Substrate utilization rate (SUR) SUR=mol substratetime\mathrm{SUR} = \dfrac{\text{mol substrate}}{\text{time}}
Oxygen utilization rate (OUR) OURA=a SUR\mathrm{OUR} \equiv A = a\ \mathrm{SUR}
Carbon dioxide evolution rate (CER) CERD=d SUR\mathrm{CER} \equiv D = d\ \mathrm{SUR}
Description Equations
Cell reaction CXwHXxOXyNXz+aOX2+bNHX3cCHXαOXβNXδ +dCOX2+eHX2O+fCXjHXkOXlNXm\ce{C_wH_xO_yN_z + a O_2 + b NH_3} \newline \ce{-> c CH_\alpha O_\beta N_\delta\ + d CO_2 + e H_2O + f C_jH_kO_lN_m}
Degree of reduction γi=(Valance # of element i)(# atom in element i)#C atom\gamma_i = \dfrac{(\text{Valance \# of element } i) (\text{\# atom in element } i)}{\text{\#} \ce{C} \text{ atom}}
Stoichiometric coefficient of oxygen a=14(wγScγXfjγP)a = \frac{1}{4}(w\gamma_S - c\gamma_X - fj\gamma_P)