Contents

CHEM E 457 Principles of Molecular Engineering

Counting and Probability

Counting

Description Equations
Total possible events if each event $E_i$ can occur in $n_i$ ways $\prod n_i$
Permutation of $n$ elements taken $r$ at a time $P(n, r) = \dfrac{n!}{(n-r)!}$
Distinguishable permutations of $n$ objects, with $n_i$ are alike of one kind $\dfrac{n!}{n_1! n_2! \cdots n_k!}$
Combination of $n$ elements taken $r$ at a time $\displaystyle C(n, r) = \binom{n}{r} = \dfrac{n!}{r!(n-r)!}$
Stirling’s approximation $x! \approx \left(\dfrac{x}{e}\right)^x$
Stirling’s approximation $\ln(x!) = x \ln(x) - x$

Probability

Description Equations
Probability $\mathbf{P}(A) = \dfrac{n_A}{N}$
Addition rule of mutually exclusive outcomes $\mathbf{P}\left(\bigcup A_i\right) = \sum \mathbf{P}(A_i)$
Multiplication rule of independent outcomes $\mathbf{P}\left(\bigcap A_i\right) = \prod \mathbf{P}(A_i)$
General addition rule $\mathbf{P}(A\cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A\cap B)$
Conditional probability $\mathbf{P}(A\vert B) \equiv \dfrac{\mathbf{P}(A\cap B)}{\mathbf{P}(B)}$
Bayes' rule $\mathbf{P}(A\vert B) = \dfrac{\mathbf{P}(A) \mathbf{P}(B\vert A)}{\mathbf{P}(B)}$
Total probability theorem $\mathbf{P}(B) = \mathbf{P}(A)\mathbf{P}(B\vert A) + \mathbf{P}(A^c)\mathbf{P}(B\vert A^c)$
Degree of correlation $g = \dfrac{\mathbf{P}(B\vert A)}{\mathbf{P}(B)} = \dfrac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)\mathbf{P}(B)}$

Continuous probability distribution

Description Equations
Normalization condition of probability distribution function $\displaystyle\int_a^b P(x) dx = 1$
Binomial distribution $P(n, N) = \dfrac{N!}{n!(N-n)!}p^n (1-p)^{N-n}$
Multinomial distribution $P(n_1, n_2, …, n_t, N) = \dfrac{N!}{\prod n_i!}\prod p_i^{n_i}$
Average $\langle x \rangle = \displaystyle\int_a^b xP(x) dx$
Average of a function $\langle f(x) \rangle = \displaystyle\int_a^b f(x)P(x) dx$
$n$th moment $\langle x^n \rangle = \displaystyle\int_a^b x^nP(x) dx$
Variance $\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$

Extremum Principles Predicts Equilibria

Physical Description Math Description Equations
Equilibrium Critical point $f'(x) = 0$
Stable equilibrium Minimum $f'(x) = 0, f''(x) > 0$
Unstable equilibrium Maximum $f'(x) = 0, f''(x) < 0$
Metastable equilibrium Local minimum $f'(x) = 0, f''(x) > 0$ in some $dx$
Neutral equilibrium Constant $f'(x) = 0$ for all $x$
  • Extremum principles
    • Minimization of energy
    • Maximization of entropy (multiplicity)
Description Equations
Method of Lagrange multiplier
Finding extremum of objective function $f(\mathbf{x})$ subjected to constraint $g(\mathbf{x})$
$\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x})$

Entropy and Boltzmann Law

  • Ground state - state of lowest energy
  • Excited state - states of higher energy
  • Microstate - microscopic configuration
  • Macrostate - collection of microstate

General applications

Description Equations
Entropy in terms of multiplicity $S = k\ln(W)$
Entropy in terms of probability $S = -k \sum p_i \ln (p_i)$
Probability of a microstate
★ No constraint on observation
★ Maximized entropy
$p_i = \dfrac{1}{t}$
Boltzmann distribution law
Probability of a microstate
★ With constraint on observation
★ Maximized entropy
$p_i = \dfrac{e^{-\beta \varepsilon_i}}{\sum e^{-\beta \varepsilon_i}} = \dfrac{e^{-\beta \varepsilon_i}}{q}$
Partition function $q = \sum e^{-\beta \varepsilon_i}$
Average observation $\langle \varepsilon \rangle = \sum \varepsilon_i p_i$

Molecular distributions

Description Boltzmann Distribution Law Partition Function
System with energy levels $p_i = \dfrac{\exp(-E_i/kT)}{Q}$ $Q = \sum \exp\left(-E_i/kT\right)$
System with energy differences $p_i = \dfrac{\exp(-(E_i-E_j)/kT)}{Q}$ $Q = \sum\exp\left(-(E_i-E_j)/kT\right)$
System with degenerate energy levels $p_i = \dfrac{W(E_l) \exp(-E_l/kT)}{Q}$ $Q = \sum W(E_l) \exp(-E_l / kT)$
Description Equations
Thermodynamic beta $\beta = \dfrac{1}{kT}$
Relative populations of particles in energy level $i$ and $j$ at equilibrium $\dfrac{p_i}{p_j} = \exp\left(-\dfrac{E_i - E_j}{kT}\right)$
Partition function of subsystem of independent distinguishable particles (solid) $Q = \prod_i^N q_i = q^N$
Partition function of subsystem of independent indistinguishable particles (gas) $Q = \dfrac{q^N}{N!}$
Internal energy $U = kT^2 \left(\dfrac{\partial\ln Q}{\partial T}\right)_{V, N}$
Average particle energy $\langle \varepsilon \rangle = \dfrac{U}{N} = \dfrac{kT^2}{N} \left(\dfrac{\partial\ln Q}{\partial T}\right)_{V, N}$
Entropy $S = k \ln Q + \dfrac{U}{T}$
Helmholtz free energy $F = U - TS = -kT \ln Q$
Chemical potential $\mu = \left(\dfrac{\partial F}{\partial N}\right)_{T, V} = -kT\left(\dfrac{\partial\ln Q}{\partial N}\right)_{T, V}$
Pressure $p = -\left(\dfrac{\partial F}{\partial V}\right)_{T, N} = kT \left(\dfrac{\partial\ln Q}{\partial N}\right)_{T, N}$

Ensembles

  • controlled set of variables
  • collection of all the possible microstates
Description Equations
Canonical ensemble $(T, V, N)$
Microcanonical ensemble $(U, V, N)$
Isobaric-isothermal ensemble $(T, P, N)$
Grand canonical ensemble $(T, V, \mu)$

Ch 13 Chemical Equilibrium

Multicomponent reactions

Description Equations
Multicomponent gas phase reaction
★ No intermolecular interactions
$\ce{aA + bB -> cC + dD}$
Difference in ground state energy $\Delta \varepsilon_0 = d \varepsilon_{0D} + c \varepsilon_{0C} - b \varepsilon_{0B} - a \varepsilon_{0A}$
Difference in Dissociation energy $\Delta D = d D_D + c D_C - b D_B - a D_A$
Dissociation energy $D = - \varepsilon_0 \\ \Delta D = -\Delta \varepsilon_0$
Equilibrium constant $K = \dfrac{N_C^c N_D^d}{N_A^a N_B^b} = \dfrac{q_C^c q_D^d}{q_A^a q_B^b} \exp\left(\dfrac{\Delta D}{kT}\right)$
Pressure-based equilibrium constant $K_p = \dfrac{p_C^c p_D^d}{p_A^a p_B^b} = \left(\dfrac{kT}{V}\right)^{(c+d) - (a+b)} \dfrac{q_C^c q_D^d}{q_A^a q_B^b} \exp\left(\dfrac{\Delta D}{kT}\right)$
Chemical potential $\mu = kT \ln\left(\dfrac{p}{p_{int}^\circ}\right) = \mu^\circ + kT \ln p$
Internal pressure $p_{int}^\circ = q_0' kT$

$T, P$ dependence of equilibrium

Description Equations
$\ln K_p = -\dfrac{\Delta\mu^\circ}{kT}$
vant’s Hoff equation
★ $\Delta h^\circ \not =\Delta h^\circ(T)$
$\dfrac{\partial (\ln K_p)}{\partial T} = \dfrac{\Delta h^\circ}{kT^2}$
vant’s Hoff plot
★ $\Delta h^\circ \not =\Delta h^\circ(T)$
$\dfrac{\partial (\ln K_p)}{\partial (1/T)} = - \dfrac{\Delta h^\circ}{k}$
vant’s Hoff equation extrapolation
★ $\Delta h^\circ \not =\Delta h^\circ(T)$
$\ln \left(\dfrac{K_{p2}}{K_{p1}}\right)=-\dfrac{\Delta h^{\circ }}{k}\left(\dfrac{1}{T_2}-\dfrac{1}{T_1}\right)$
Gibbs-Helmholtz equation $\dfrac{\partial }{\partial T}\left(\dfrac{G}{T}\right)=-\dfrac{H}{T^2}$
Gibbs-Helmholtz equation $\dfrac{\partial }{\partial T}\left(\dfrac{F}{T}\right)=-\dfrac{U}{T^2}$
Pressure dependence of equilibrium constant $\dfrac{\partial (\ln K)}{\partial p} = -\dfrac{\Delta v^\circ}{kT}$

Ch 14 Physical Equilibrium

Description Equations
Equilibrium condition $\mu_{\mathrm{vapor}} = \mu_{\mathrm{condensed}}$
Chemical potential of vapor $\mu_{\mathrm{vapor}} = kT\ln \left(\dfrac{p}{p^{\circ}_{int}}\right)$
Entropy of condensed phase $\Delta S_{\mathrm{condensed}} = 0$
Internal energy of condensed phase $\Delta U_{\mathrm{condensed}} = \frac{1}{2} Nzw_{AA}$
Free energy of condensed phase $\Delta F_{\mathrm{condensed}} = \frac{1}{2} Nzw_{AA}$
Chemical potential of condensed phase $\mu_{\mathrm{condensed}} = \left(\dfrac{\partial F}{\partial N}\right)_{T,V} = \dfrac{1}{2}zw_{AA}$
Description Equations
Equilibrium vapor pressure $p = p^{\circ}_{int} \exp \left(\dfrac{zw_{AA}}{2kT}\right)$
Clausius-Clapyeron equation $\ln \left(\dfrac{p_2^{\text{sat}}}{p_1^{\text{sat}}}\right)=-\dfrac{\Delta h}{R}\left(\dfrac{1}{T_2}-\dfrac{1}{T_1}\right)$
Enthalpy of vaporization $\Delta h_{\mathrm{vap}} = - \frac{1}{2}zw_{AA}$
Internal energy to close a cavity $\Delta U = \frac{1}{2}zw_{AA}$
Internal energy to open a cavity $\Delta U = - \frac{1}{2}zw_{AA}$
Surface tension $\sigma = -\dfrac{w_{AA}}{2a}$
Free energy of adsorption $F_{\text{ads}} = \sigma a = -\dfrac{w_{AA}}{2a}$

Ch 15 Mixtures

Ideal solutions

Description Equations
Entropy of solution for binary systems $\Delta S_{\text{soln}} = -Nk(x_A \ln x_A + x_B \ln x_B)$
Entropy of solution for multicomponent systems $\Delta S_{\text{soln}} = -Nk \sum x_i \ln x_i$
Internal energy of solution $\Delta U_{\text{soln}} = 0$
Free energy of solution $\Delta F_{\text{soln}} = -T \Delta S_{\text{soln}}$

Regular solutions

Description Equations
Exchange parameter
(dimensionless free energy)
$\chi_{AB} = \dfrac{z}{kT} (w_{AB}-\frac{1}{2}\left(w_{AA}+w_{BB}\right))$
Exchange parameter $\chi_{AB} = -\ln K_{\text{exch}}$
Exchange parameter interpretation $\chi_{AB} > 0$, mixing unfavorable
$\chi_{AB} < 0$, mixing favorable
Exchange energy $RT\chi_{AB}$
Constant $\begin{aligned}c_1 &= \chi_{AB}T \\ &= \dfrac{z}{k} (w_{AB}-\frac{1}{2}\left(w_{AA}+w_{BB}\right))\end{aligned}$
Entropy of solution for binary systems $\Delta S_{\text{soln}} = -Nk(x_A \ln x_A + x_B \ln x_B)$
Entropy of solution for multicomponent systems $\Delta S_{\text{soln}} = -Nk \sum x_i \ln x_i$
Internal energy of solution of binary systems $\Delta U_{\text{soln}} = NkT\chi_{AB}x_A x_B$
Internal energy of solution of multicomponent systems $\Delta U_{\text{soln}} = NkT \sum \chi_{ij} x_i x_j$
Free energy of solution $\Delta F_{\text{soln}} = \Delta U_{\text{soln}} - T \Delta S_{\text{soln}}$
Free energy of solution of binary systems $\Delta F_{\text{soln}} = NkT (x_A \ln x_A + x_B \ln x_B + \chi_{AB}x_A x_B)$
Free energy of solution of multicomponent systems $\Delta F_{\text{soln}} = NkT (\sum x_i \ln x_i + \sum\chi_{ij}x_i x_j)$
Chemical potentials of binary systems $\mu_A = \ln x_A + \dfrac{zw_{AA}}{2kT} + \chi_{AB} x_B^2 \\ \ \\ \mu_B = \ln x_B + \dfrac{zw_{BB}}{2kT} + \chi_{AB} x_A^2$
Chemical potentials of multicomponent systems $\begin{aligned} \mu_i & = \ln x_i + \dfrac{zw_{ii}}{kT} + \chi_{ij} (1-x_i)^2 \\ &=\mu^\circ + kT \ln(\gamma x) \end{aligned}$

Surface tension

Description Equations
Interfacial tension $\begin{aligned} \sigma_{AB} &= \dfrac{1}{a} (w_{AB}-\frac{1}{2}\left(w_{AA}+w_{BB}\right)) \\ &= \dfrac{kT}{za} \chi_{AB} \end{aligned}$
Free energy of adsorption $F_{\text{ads}} = \sigma a = \dfrac{kT}{z} \chi_{AB}$

Ch 16 Solvation and Phase Transfer

Lewis/Randall rule

Description Equations
Notation
★ Solvent, pure limit $x_B \to 1$
A - non-volatile solute (e.g. $\ce{NaCl}$)
B - volatile solvent (e.g. $\ce{H2O}$)
Lewis/Randall rule reference state $\begin{aligned}p_B &= p_{B, int}^\circ x_B \exp \left(\chi _{AB}x_A^2+\dfrac{zw_{BB}}{2kT}\right) \\ &= p_{B}^\circ x_B \exp \left(\chi _{AB}x_A^2\right)\end{aligned}$
Raoult’s law
★ Ideal solution $\chi_{AB} = 0$
$p_B = p_B^\circ x_B$
Vapor pressure of B $p_B^\circ = p_{B, int}^\circ \exp \left(\dfrac{zw_{BB}}{2kT}\right)$

Henry’s law

Description Equations
Notation
★ Solute, dilute limit $x_B \to 0$
A - non-volatile solvent (e.g. $\ce{H2O}$)
B - volatile solute (e.g. $\ce{CO_2}$)
Henry’s law reference state $\begin{aligned} p_B &= p_{B, int}^\circ x_B \exp \left(\chi_{AB} + \dfrac{aw_{BB}}{2kT}\right) \\ &= p_{B, int}^\circ x_B \exp \left(w_{AB} - \dfrac{w_{AA}}{2}\right) \\ &=\mathcal{H}_B x_B \end{aligned}$
Henry’s constant $\begin{aligned}\mathcal{H}_B &= p_{B, int}^\circ \exp\left(\dfrac{z}{kT}w_{AB} - \dfrac{w_{AA}}{2}\right) \\ &= p_{B, int}^\circ \exp\left(\dfrac{\Delta h^\circ_{\mathrm{soln}}}{kT}\right)\end{aligned}$
Enthalpy of solution $\Delta h^\circ_{\mathrm{soln}} = z\left(w_{AB} - \dfrac{w_{AA}}{2}\right)$

Activity coefficient

Description Equations
Standard state chemical potential $\Delta \mu_B^\circ = \mu_B^\circ(\text{liquid}) - \mu_B^\circ(\text{gas})$
Activity coefficient $\gamma_B = \dfrac{p_B}{x_B}\exp\left(-\dfrac{\Delta \mu_B^\circ}{kT}\right)$
Activity coefficient in Lewis/Randall solvent convection $\gamma_B = \exp[\chi_{AB} (1 - x_B)^2]$
Activity coefficient in Henry’s solute convection $\gamma_B = \exp[\chi_{AB} x_B (x_B - 2)]$

Colligative properties

Description Equations
Boiling point elevation $\Delta T_b = \dfrac{RT_b^2 x_A}{\Delta h_{\text{vap}}^\circ}$
Freezing point depression $\Delta T_f = \dfrac{RT_f^2 x_A}{\Delta h_{\text{fus}}^\circ}$
Osmotic pressure $\pi = \dfrac{RTx_A}{v_B} = RTc_A$

Solute partition

Description Equations
Notation A - immiscible solvent
B - immiscible solvent
s - solute
Partition coefficient from solvent A to B $K_A^B = \dfrac{x_{sB}}{x_{sA}}$
Free energy of transfer $\Delta \mu^\circ = \mu_s^\circ(B) - \mu_s^\circ(A)$
Statistical mechanical interpretation $\ln K_A^B = \chi_{sA} (1 - x_{sA})^2 - \chi_{sB} (1 - x_{sB})^2$
Thermodynamical interpretation $\ln K_A^B = - \dfrac{\mu_s^\circ(B) - \mu_s^\circ(A)}{kT} - \ln \left(\dfrac{\gamma_{sB}}{\gamma_{sA}}\right)$
Partition coefficient at infinite dilution
★ Infinite dilution of solute in both phases $x_{sa} \ll 1$, $x_{sB} \ll 1$, $\gamma_{sa} \to 1$, $\gamma_{sB} \to 1$
$\begin{aligned}\ln K_A^B &= - \dfrac{\mu_s^\circ(B) - \mu_s^\circ(A)}{kT} \\ &= \chi_{sA} - \chi_{sB} \end{aligned}$

Ch 25 Phase Transitions

Description Equations
Fractions $f^\alpha = \dfrac{n^\alpha}{n}$
Lever rule $f' = \dfrac{x'' - x_0}{x'' - x'} \\ f'' = \dfrac{x_0 - x'}{x'' - x'}$
Lever rule $v_A = f^\alpha v_A^\alpha + f^\beta v_A^\beta$
Binodal curve $\dfrac{\partial (\Delta F_{\text{mix}})}{\partial x} = 0 = NkT\left[\ln \left(\dfrac{x}{1-x}\right)+\chi _{AB}\left(1-2x\right)\right]$
Binodal curve
★ Dilute solute $x' \ll 1$, large $\chi_{AB}$
$\chi_{AB} = -\ln x'$
Spinodal curve $\dfrac{\partial^2 F}{\partial x^2} = 0 = NkT\left[\frac{1}{x}+\frac{1}{1-x}-2\chi _{AB}\right]$
Spinodal curve
★ Dilute solute $x' \ll 1$, large $\chi_{AB}$
$x' = \dfrac{1}{2\chi_{AB} - 1}$
Critical point $\dfrac{\partial^3 F}{\partial x^2} = 0$
Critical composition $x_c = \dfrac{1}{2}$
Critical exchange parameter $\chi_c = 2$
Critical exchange temperature $T_c = \dfrac{c_1}{2}$
van der Waals EOS $\left(p + \dfrac{a}{v^2}\right)(v-b) = RT$
Reduced form of van der Waals EOS $\left(p_r + \dfrac{3}{v_r^2}\right)\left(v_r - \dfrac{1}{3}\right) = \dfrac{8}{3}T_r$