CHEM E 457 Principles of Molecular Engineering

Contents
Description Equations
Total possible events if each event EiE_i can occur in nin_i ways ni\prod n_i
Permutation of nn elements taken rr at a time P(n,r)=n!(nr)!P(n, r) = \dfrac{n!}{(n-r)!}
Distinguishable permutations of nn objects, with nin_i are alike of one kind n!n1!n2!nk!\dfrac{n!}{n_1! n_2! \cdots n_k!}
Combination of nn elements taken rr at a time C(n,r)=(nr)=n!r!(nr)!\displaystyle C(n, r) = \binom{n}{r} = \dfrac{n!}{r!(n-r)!}
Stirling’s approximation x!(xe)xx! \approx \left(\dfrac{x}{e}\right)^x
Stirling’s approximation ln(x!)=xln(x)x\ln(x!) = x \ln(x) - x
Description Equations
Probability P(A)=nAN\mathbf{P}(A) = \dfrac{n_A}{N}
Addition rule of mutually exclusive outcomes P(Ai)=P(Ai)\mathbf{P}\left(\bigcup A_i\right) = \sum \mathbf{P}(A_i)
Multiplication rule of independent outcomes P(Ai)=P(Ai)\mathbf{P}\left(\bigcap A_i\right) = \prod \mathbf{P}(A_i)
General addition rule P(AB)=P(A)+P(B)P(AB)\mathbf{P}(A\cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A\cap B)
Conditional probability P(AB)P(AB)P(B)\mathbf{P}(A\vert B) \equiv \dfrac{\mathbf{P}(A\cap B)}{\mathbf{P}(B)}
Bayes' rule P(AB)=P(A)P(BA)P(B)\mathbf{P}(A\vert B) = \dfrac{\mathbf{P}(A) \mathbf{P}(B\vert A)}{\mathbf{P}(B)}
Total probability theorem P(B)=P(A)P(BA)+P(Ac)P(BAc)\mathbf{P}(B) = \mathbf{P}(A)\mathbf{P}(B\vert A) + \mathbf{P}(A^c)\mathbf{P}(B\vert A^c)
Degree of correlation g=P(BA)P(B)=P(AB)P(A)P(B)g = \dfrac{\mathbf{P}(B\vert A)}{\mathbf{P}(B)} = \dfrac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)\mathbf{P}(B)}
Description Equations
Normalization condition of probability distribution function abP(x)dx=1\displaystyle\int_a^b P(x) dx = 1
Binomial distribution P(n,N)=N!n!(Nn)!pn(1p)NnP(n, N) = \dfrac{N!}{n!(N-n)!}p^n (1-p)^{N-n}
Multinomial distribution P(n1,n2,,nt,N)=N!ni!piniP(n_1, n_2, …, n_t, N) = \dfrac{N!}{\prod n_i!}\prod p_i^{n_i}
Average x=abxP(x)dx\langle x \rangle = \displaystyle\int_a^b xP(x) dx
Average of a function f(x)=abf(x)P(x)dx\langle f(x) \rangle = \displaystyle\int_a^b f(x)P(x) dx
nnth moment xn=abxnP(x)dx\langle x^n \rangle = \displaystyle\int_a^b x^nP(x) dx
Variance σ2=x2x2\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2
Physical Description Math Description Equations
Equilibrium Critical point f(x)=0f'(x) = 0
Stable equilibrium Minimum f(x)=0,f(x)>0f'(x) = 0, f''(x) > 0
Unstable equilibrium Maximum f(x)=0,f(x)<0f'(x) = 0, f''(x) < 0
Metastable equilibrium Local minimum f(x)=0,f(x)>0f'(x) = 0, f''(x) > 0 in some dxdx
Neutral equilibrium Constant f(x)=0f'(x) = 0 for all xx
  • Extremum principles
    • Minimization of energy
    • Maximization of entropy (multiplicity)
Description Equations
Method of Lagrange multiplier
Finding extremum of objective function f(x)f(\mathbf{x}) subjected to constraint g(x)g(\mathbf{x})
f(x)=λg(x)\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x})
  • Ground state - state of lowest energy
  • Excited state - states of higher energy
  • Microstate - microscopic configuration
  • Macrostate - collection of microstate
Description Equations
Entropy in terms of multiplicity S=kln(W)S = k\ln(W)
Entropy in terms of probability S=kpiln(pi)S = -k \sum p_i \ln (p_i)
Probability of a microstate
★ No constraint on observation
★ Maximized entropy
pi=1tp_i = \dfrac{1}{t}
Boltzmann distribution law
Probability of a microstate
★ With constraint on observation
★ Maximized entropy
pi=eβεieβεi=eβεiqp_i = \dfrac{e^{-\beta \varepsilon_i}}{\sum e^{-\beta \varepsilon_i}} = \dfrac{e^{-\beta \varepsilon_i}}{q}
Partition function q=eβεiq = \sum e^{-\beta \varepsilon_i}
Average observation ε=εipi\langle \varepsilon \rangle = \sum \varepsilon_i p_i
Description Boltzmann Distribution Law Partition Function
System with energy levels pi=exp(Ei/kT)Qp_i = \dfrac{\exp(-E_i/kT)}{Q} Q=exp(Ei/kT)Q = \sum \exp\left(-E_i/kT\right)
System with energy differences pi=exp((EiEj)/kT)Qp_i = \dfrac{\exp(-(E_i-E_j)/kT)}{Q} Q=exp((EiEj)/kT)Q = \sum\exp\left(-(E_i-E_j)/kT\right)
System with degenerate energy levels pi=W(El)exp(El/kT)Qp_i = \dfrac{W(E_l) \exp(-E_l/kT)}{Q} Q=W(El)exp(El/kT)Q = \sum W(E_l) \exp(-E_l / kT)
Description Equations
Thermodynamic beta β=1kT\beta = \dfrac{1}{kT}
Relative populations of particles in energy level ii and jj at equilibrium pipj=exp(EiEjkT)\dfrac{p_i}{p_j} = \exp\left(-\dfrac{E_i - E_j}{kT}\right)
Partition function of subsystem of independent distinguishable particles (solid) Q=iNqi=qNQ = \prod_i^N q_i = q^N
Partition function of subsystem of independent indistinguishable particles (gas) Q=qNN!Q = \dfrac{q^N}{N!}
Internal energy U=kT2(lnQT)V,NU = kT^2 \left(\dfrac{\partial\ln Q}{\partial T}\right)_{V, N}
Average particle energy ε=UN=kT2N(lnQT)V,N\langle \varepsilon \rangle = \dfrac{U}{N} = \dfrac{kT^2}{N} \left(\dfrac{\partial\ln Q}{\partial T}\right)_{V, N}
Entropy S=klnQ+UTS = k \ln Q + \dfrac{U}{T}
Helmholtz free energy F=UTS=kTlnQF = U - TS = -kT \ln Q
Chemical potential μ=(FN)T,V=kT(lnQN)T,V\mu = \left(\dfrac{\partial F}{\partial N}\right)_{T, V} = -kT\left(\dfrac{\partial\ln Q}{\partial N}\right)_{T, V}
Pressure p=(FV)T,N=kT(lnQN)T,Np = -\left(\dfrac{\partial F}{\partial V}\right)_{T, N} = kT \left(\dfrac{\partial\ln Q}{\partial N}\right)_{T, N}
  • controlled set of variables
  • collection of all the possible microstates
Description Equations
Canonical ensemble (T,V,N)(T, V, N)
Microcanonical ensemble (U,V,N)(U, V, N)
Isobaric-isothermal ensemble (T,P,N)(T, P, N)
Grand canonical ensemble (T,V,μ)(T, V, \mu)
Description Equations
Multicomponent gas phase reaction
★ No intermolecular interactions
aA+bBcC+dD\ce{aA + bB -> cC + dD}
Difference in ground state energy Δε0=dε0D+cε0Cbε0Baε0A\Delta \varepsilon_0 = d \varepsilon_{0D} + c \varepsilon_{0C} - b \varepsilon_{0B} - a \varepsilon_{0A}
Difference in Dissociation energy ΔD=dDD+cDCbDBaDA\Delta D = d D_D + c D_C - b D_B - a D_A
Dissociation energy D=ε0ΔD=Δε0D = - \varepsilon_0 \\ \Delta D = -\Delta \varepsilon_0
Equilibrium constant K=NCcNDdNAaNBb=qCcqDdqAaqBbexp(ΔDkT)K = \dfrac{N_C^c N_D^d}{N_A^a N_B^b} = \dfrac{q_C^c q_D^d}{q_A^a q_B^b} \exp\left(\dfrac{\Delta D}{kT}\right)
Pressure-based equilibrium constant Kp=pCcpDdpAapBb=(kTV)(c+d)(a+b)qCcqDdqAaqBbexp(ΔDkT)K_p = \dfrac{p_C^c p_D^d}{p_A^a p_B^b} = \left(\dfrac{kT}{V}\right)^{(c+d) - (a+b)} \dfrac{q_C^c q_D^d}{q_A^a q_B^b} \exp\left(\dfrac{\Delta D}{kT}\right)
Chemical potential μ=kTln(ppint)=μ+kTlnp\mu = kT \ln\left(\dfrac{p}{p_{int}^\circ}\right) = \mu^\circ + kT \ln p
Internal pressure pint=q0kTp_{int}^\circ = q_0' kT
Description Equations
lnKp=ΔμkT\ln K_p = -\dfrac{\Delta\mu^\circ}{kT}
vant’s Hoff equation
ΔhΔh(T)\Delta h^\circ \not =\Delta h^\circ(T)
(lnKp)T=ΔhkT2\dfrac{\partial (\ln K_p)}{\partial T} = \dfrac{\Delta h^\circ}{kT^2}
vant’s Hoff plot
ΔhΔh(T)\Delta h^\circ \not =\Delta h^\circ(T)
(lnKp)(1/T)=Δhk\dfrac{\partial (\ln K_p)}{\partial (1/T)} = - \dfrac{\Delta h^\circ}{k}
vant’s Hoff equation extrapolation
ΔhΔh(T)\Delta h^\circ \not =\Delta h^\circ(T)
ln(Kp2Kp1)=Δhk(1T21T1)\ln \left(\dfrac{K_{p2}}{K_{p1}}\right)=-\dfrac{\Delta h^{\circ }}{k}\left(\dfrac{1}{T_2}-\dfrac{1}{T_1}\right)
Gibbs-Helmholtz equation T(GT)=HT2\dfrac{\partial }{\partial T}\left(\dfrac{G}{T}\right)=-\dfrac{H}{T^2}
Gibbs-Helmholtz equation T(FT)=UT2\dfrac{\partial }{\partial T}\left(\dfrac{F}{T}\right)=-\dfrac{U}{T^2}
Pressure dependence of equilibrium constant (lnK)p=ΔvkT\dfrac{\partial (\ln K)}{\partial p} = -\dfrac{\Delta v^\circ}{kT}
Description Equations
Equilibrium condition μvapor=μcondensed\mu_{\mathrm{vapor}} = \mu_{\mathrm{condensed}}
Chemical potential of vapor μvapor=kTln(ppint)\mu_{\mathrm{vapor}} = kT\ln \left(\dfrac{p}{p^{\circ}_{int}}\right)
Entropy of condensed phase ΔScondensed=0\Delta S_{\mathrm{condensed}} = 0
Internal energy of condensed phase ΔUcondensed=12NzwAA\Delta U_{\mathrm{condensed}} = \frac{1}{2} Nzw_{AA}
Free energy of condensed phase ΔFcondensed=12NzwAA\Delta F_{\mathrm{condensed}} = \frac{1}{2} Nzw_{AA}
Chemical potential of condensed phase μcondensed=(FN)T,V=12zwAA\mu_{\mathrm{condensed}} = \left(\dfrac{\partial F}{\partial N}\right)_{T,V} = \dfrac{1}{2}zw_{AA}
Description Equations
Equilibrium vapor pressure p=pintexp(zwAA2kT)p = p^{\circ}_{int} \exp \left(\dfrac{zw_{AA}}{2kT}\right)
Clausius-Clapyeron equation ln(p2satp1sat)=ΔhR(1T21T1)\ln \left(\dfrac{p_2^{\text{sat}}}{p_1^{\text{sat}}}\right)=-\dfrac{\Delta h}{R}\left(\dfrac{1}{T_2}-\dfrac{1}{T_1}\right)
Enthalpy of vaporization Δhvap=12zwAA\Delta h_{\mathrm{vap}} = - \frac{1}{2}zw_{AA}
Internal energy to close a cavity ΔU=12zwAA\Delta U = \frac{1}{2}zw_{AA}
Internal energy to open a cavity ΔU=12zwAA\Delta U = - \frac{1}{2}zw_{AA}
Surface tension σ=wAA2a\sigma = -\dfrac{w_{AA}}{2a}
Free energy of adsorption Fads=σa=wAA2aF_{\text{ads}} = \sigma a = -\dfrac{w_{AA}}{2a}
Description Equations
Entropy of solution for binary systems ΔSsoln=Nk(xAlnxA+xBlnxB)\Delta S_{\text{soln}} = -Nk(x_A \ln x_A + x_B \ln x_B)
Entropy of solution for multicomponent systems ΔSsoln=Nkxilnxi\Delta S_{\text{soln}} = -Nk \sum x_i \ln x_i
Internal energy of solution ΔUsoln=0\Delta U_{\text{soln}} = 0
Free energy of solution ΔFsoln=TΔSsoln\Delta F_{\text{soln}} = -T \Delta S_{\text{soln}}
Description Equations
Exchange parameter
(dimensionless free energy)
χAB=zkT(wAB12(wAA+wBB))\chi_{AB} = \dfrac{z}{kT} (w_{AB}-\frac{1}{2}\left(w_{AA}+w_{BB}\right))
Exchange parameter χAB=lnKexch\chi_{AB} = -\ln K_{\text{exch}}
Exchange parameter interpretation χAB>0\chi_{AB} > 0, mixing unfavorable
χAB<0\chi_{AB} < 0, mixing favorable
Exchange energy RTχABRT\chi_{AB}
Constant c1=χABT=zk(wAB12(wAA+wBB))\begin{aligned}c_1 &= \chi_{AB}T \\ &= \dfrac{z}{k} (w_{AB}-\frac{1}{2}\left(w_{AA}+w_{BB}\right))\end{aligned}
Entropy of solution for binary systems ΔSsoln=Nk(xAlnxA+xBlnxB)\Delta S_{\text{soln}} = -Nk(x_A \ln x_A + x_B \ln x_B)
Entropy of solution for multicomponent systems ΔSsoln=Nkxilnxi\Delta S_{\text{soln}} = -Nk \sum x_i \ln x_i
Internal energy of solution of binary systems ΔUsoln=NkTχABxAxB\Delta U_{\text{soln}} = NkT\chi_{AB}x_A x_B
Internal energy of solution of multicomponent systems ΔUsoln=NkTχijxixj\Delta U_{\text{soln}} = NkT \sum \chi_{ij} x_i x_j
Free energy of solution ΔFsoln=ΔUsolnTΔSsoln\Delta F_{\text{soln}} = \Delta U_{\text{soln}} - T \Delta S_{\text{soln}}
Free energy of solution of binary systems ΔFsoln=NkT(xAlnxA+xBlnxB+χABxAxB)\Delta F_{\text{soln}} = NkT (x_A \ln x_A + x_B \ln x_B + \chi_{AB}x_A x_B)
Free energy of solution of multicomponent systems ΔFsoln=NkT(xilnxi+χijxixj)\Delta F_{\text{soln}} = NkT (\sum x_i \ln x_i + \sum\chi_{ij}x_i x_j)
Chemical potentials of binary systems μA=lnxA+zwAA2kT+χABxB2 μB=lnxB+zwBB2kT+χABxA2\mu_A = \ln x_A + \dfrac{zw_{AA}}{2kT} + \chi_{AB} x_B^2 \\ \ \\ \mu_B = \ln x_B + \dfrac{zw_{BB}}{2kT} + \chi_{AB} x_A^2
Chemical potentials of multicomponent systems μi=lnxi+zwiikT+χij(1xi)2=μ+kTln(γx)\begin{aligned} \mu_i & = \ln x_i + \dfrac{zw_{ii}}{kT} + \chi_{ij} (1-x_i)^2 \\ &=\mu^\circ + kT \ln(\gamma x) \end{aligned}
Description Equations
Interfacial tension σAB=1a(wAB12(wAA+wBB))=kTzaχAB\begin{aligned} \sigma_{AB} &= \dfrac{1}{a} (w_{AB}-\frac{1}{2}\left(w_{AA}+w_{BB}\right)) \\ &= \dfrac{kT}{za} \chi_{AB} \end{aligned}
Free energy of adsorption Fads=σa=kTzχABF_{\text{ads}} = \sigma a = \dfrac{kT}{z} \chi_{AB}
Description Equations
Notation
★ Solvent, pure limit xB1x_B \to 1
A - non-volatile solute (e.g. NaCl\ce{NaCl})
B - volatile solvent (e.g. HX2O\ce{H2O})
Lewis/Randall rule reference state pB=pB,intxBexp(χABxA2+zwBB2kT)=pBxBexp(χABxA2)\begin{aligned}p_B &= p_{B, int}^\circ x_B \exp \left(\chi _{AB}x_A^2+\dfrac{zw_{BB}}{2kT}\right) \\ &= p_{B}^\circ x_B \exp \left(\chi _{AB}x_A^2\right)\end{aligned}
Raoult’s law
★ Ideal solution χAB=0\chi_{AB} = 0
pB=pBxBp_B = p_B^\circ x_B
Vapor pressure of B pB=pB,intexp(zwBB2kT)p_B^\circ = p_{B, int}^\circ \exp \left(\dfrac{zw_{BB}}{2kT}\right)
Description Equations
Notation
★ Solute, dilute limit xB0x_B \to 0
A - non-volatile solvent (e.g. HX2O\ce{H2O})
B - volatile solute (e.g. COX2\ce{CO_2})
Henry’s law reference state pB=pB,intxBexp(χAB+awBB2kT)=pB,intxBexp(wABwAA2)=HBxB\begin{aligned} p_B &= p_{B, int}^\circ x_B \exp \left(\chi_{AB} + \dfrac{aw_{BB}}{2kT}\right) \\ &= p_{B, int}^\circ x_B \exp \left(w_{AB} - \dfrac{w_{AA}}{2}\right) \\ &=\mathcal{H}_B x_B \end{aligned}
Henry’s constant HB=pB,intexp(zkTwABwAA2)=pB,intexp(ΔhsolnkT)\begin{aligned}\mathcal{H}_B &= p_{B, int}^\circ \exp\left(\dfrac{z}{kT}w_{AB} - \dfrac{w_{AA}}{2}\right) \\ &= p_{B, int}^\circ \exp\left(\dfrac{\Delta h^\circ_{\mathrm{soln}}}{kT}\right)\end{aligned}
Enthalpy of solution Δhsoln=z(wABwAA2)\Delta h^\circ_{\mathrm{soln}} = z\left(w_{AB} - \dfrac{w_{AA}}{2}\right)
Description Equations
Standard state chemical potential ΔμB=μB(liquid)μB(gas)\Delta \mu_B^\circ = \mu_B^\circ(\text{liquid}) - \mu_B^\circ(\text{gas})
Activity coefficient γB=pBxBexp(ΔμBkT)\gamma_B = \dfrac{p_B}{x_B}\exp\left(-\dfrac{\Delta \mu_B^\circ}{kT}\right)
Activity coefficient in Lewis/Randall solvent convection γB=exp[χAB(1xB)2]\gamma_B = \exp[\chi_{AB} (1 - x_B)^2]
Activity coefficient in Henry’s solute convection γB=exp[χABxB(xB2)]\gamma_B = \exp[\chi_{AB} x_B (x_B - 2)]
Description Equations
Boiling point elevation ΔTb=RTb2xAΔhvap\Delta T_b = \dfrac{RT_b^2 x_A}{\Delta h_{\text{vap}}^\circ}
Freezing point depression ΔTf=RTf2xAΔhfus\Delta T_f = \dfrac{RT_f^2 x_A}{\Delta h_{\text{fus}}^\circ}
Osmotic pressure π=RTxAvB=RTcA\pi = \dfrac{RTx_A}{v_B} = RTc_A
Description Equations
Notation A - immiscible solvent
B - immiscible solvent
s - solute
Partition coefficient from solvent A to B KAB=xsBxsAK_A^B = \dfrac{x_{sB}}{x_{sA}}
Free energy of transfer Δμ=μs(B)μs(A)\Delta \mu^\circ = \mu_s^\circ(B) - \mu_s^\circ(A)
Statistical mechanical interpretation lnKAB=χsA(1xsA)2χsB(1xsB)2\ln K_A^B = \chi_{sA} (1 - x_{sA})^2 - \chi_{sB} (1 - x_{sB})^2
Thermodynamical interpretation lnKAB=μs(B)μs(A)kTln(γsBγsA)\ln K_A^B = - \dfrac{\mu_s^\circ(B) - \mu_s^\circ(A)}{kT} - \ln \left(\dfrac{\gamma_{sB}}{\gamma_{sA}}\right)
Partition coefficient at infinite dilution
★ Infinite dilution of solute in both phases xsa1x_{sa} \ll 1, xsB1x_{sB} \ll 1, γsa1\gamma_{sa} \to 1, γsB1\gamma_{sB} \to 1
lnKAB=μs(B)μs(A)kT=χsAχsB\begin{aligned}\ln K_A^B &= - \dfrac{\mu_s^\circ(B) - \mu_s^\circ(A)}{kT} \\ &= \chi_{sA} - \chi_{sB} \end{aligned}
Description Equations
Fractions fα=nαnf^\alpha = \dfrac{n^\alpha}{n}
Lever rule f=xx0xxf=x0xxxf' = \dfrac{x'' - x_0}{x'' - x'} \\ f'' = \dfrac{x_0 - x'}{x'' - x'}
Lever rule vA=fαvAα+fβvAβv_A = f^\alpha v_A^\alpha + f^\beta v_A^\beta
Binodal curve (ΔFmix)x=0=NkT[ln(x1x)+χAB(12x)]\dfrac{\partial (\Delta F_{\text{mix}})}{\partial x} = 0 = NkT\left[\ln \left(\dfrac{x}{1-x}\right)+\chi _{AB}\left(1-2x\right)\right]
Binodal curve
★ Dilute solute x1x' \ll 1, large χAB\chi_{AB}
χAB=lnx\chi_{AB} = -\ln x'
Spinodal curve 2Fx2=0=NkT[1x+11x2χAB]\dfrac{\partial^2 F}{\partial x^2} = 0 = NkT\left[\frac{1}{x}+\frac{1}{1-x}-2\chi _{AB}\right]
Spinodal curve
★ Dilute solute x1x' \ll 1, large χAB\chi_{AB}
x=12χAB1x' = \dfrac{1}{2\chi_{AB} - 1}
Critical point 3Fx2=0\dfrac{\partial^3 F}{\partial x^2} = 0
Critical composition xc=12x_c = \dfrac{1}{2}
Critical exchange parameter χc=2\chi_c = 2
Critical exchange temperature Tc=c12T_c = \dfrac{c_1}{2}
van der Waals EOS (p+av2)(vb)=RT\left(p + \dfrac{a}{v^2}\right)(v-b) = RT
Reduced form of van der Waals EOS (pr+3vr2)(vr13)=83Tr\left(p_r + \dfrac{3}{v_r^2}\right)\left(v_r - \dfrac{1}{3}\right) = \dfrac{8}{3}T_r