Contents

CHEM E 435 Transport Process III

Separation Processes

Types of Separations

Separations by phase creation

Separation Operation Feed Phase Created Phase Separating Agent
Partial condensation/vaporization V and/or L L or V Heat transfer (ESA)
Flash vaporization L V Pressure reduction
Distillation V and/or L V and L Heat transfer (ESA) and sometimes shaft work (ESA)

Separations by phase addition

Separation Operation Feed Phase Created Phase Separating Agent
Absorption V L Liquid absorbent (MSA)
Stripping L V Stripping vapor (MSA)
Liquid-liquid extraction L L Liquid solvent (MSA)
Adsorption V or L S Solid adsorbent (MSA)

Separations by barrier

Separation Operation Feed Phase Barrier Separating Agent
Dialysis L Microporous membrane Pressure (ESA)
Reverse osmosis L Microporous membrane Pressure (ESA)
Gas permeation Vapor Nonporous membrane Pressure (ESA)
Pervaporation L Nonporous membrane Pressure and heat transfer (ESA)

Separations by external field/gradient

  • Centrifugation - pressure gradient
  • Thermal diffusion - temperature gradient
  • Electrolysis
  • Electrodialysis - permeable membrane with fixed charge
  • Electrophoresis - electric field
  • Magnetophoresis - magnetic field
  • Crystallization - solubility

Thermodynamics Review

Description Equations
Equilibrium conditions $\begin{aligned}T_1 &= T_2 \\ P_1 &= P_2 \\ \bar{f}_2 &= \bar{f}_2 \\ a_1 &= a_2\end{aligned}$
Fugacity $\bar{f}_i = \bar{f}_i^\circ \exp\left(\dfrac{\mu_i}{RT}\right)$
Fugacity coefficient $\phi_i = \dfrac{f_i}{P}$
Partial fugacity coefficient $\phi_i = \dfrac{f_i}{x_iP}$
Activity $a_i = \dfrac{\bar{f}_i}{f_i^\circ}$
Activity coefficient $\gamma_i = \dfrac{a_i}{x_i}$

$K$-values

Description Equations
$K$-value (vapor-liquid equilibrium ratio) $K_i = \dfrac{y_i}{x_i}$
Distribution ratio (partition coefficient, liquid-liquid equilibrium ratio $K_{D_i} = \dfrac{x_i^\alpha}{x_i^\beta}$
Relative volatility $\alpha_{i, j} = \dfrac{K_i}{K_j}$
Relative selectivity $\beta{i, j} = \dfrac{K_{D_i}}{K_{D_j}}$
Raoult’s law
★ Ideal solution
$K_i = \dfrac{P_i^*}{P}$
Modified Raoult’s law
★ Low pressure
$K_i = \gamma_{i, L}\dfrac{P_i^*}{P}$
Poynting correction
★ Moderate pressure
$K_i = \gamma_{i, L}\phi_{i, V}^\mathrm{sat}\left(\dfrac{P_i^\mathrm{sat}}{P}\right) \exp\left[\dfrac{1}{RT}\displaystyle\int^P_{P_i^{\mathrm{sat}}} v_{i, L} dP \right]$
Henry’s law
★ Dilute species
$K_i = \dfrac{H_i}{P}$

Mass Transfer and Diffusion

Steady-state ordinary molecular diffusion (OMD)

Description Equations
Fick’s first law
Molecular diffusion flux of species A
$\begin{aligned} J_{A} &= -cD_{AB}\dfrac{dx_A}{dx} \\ &= -D_{AB} \dfrac{dc_A}{dz} \end{aligned} \newline j_{A} = -\rho D_{AB}\dfrac{dw_A}{dz}$
Bulk flow flux $N = N_A + N_B$
Bulk flow flux of species A $x_A N$
Molar flux of species A (definition) $N_A = \dfrac{\dot{n}_A}{A}$
Molar flux of species A
★ No eddie diffusion flux
$\begin{aligned} N_A &= \text{bulk flow flux} + \text{molecular diffusion flux}\\ N_A &= x_A N - cD_{AB} \dfrac{dx_A}{dz} \end{aligned}$
Total velocity of species A $v_A = \dfrac{N_A}{c_A}$
Molar-average mixture velocity $v_M = v_Ax_A + v_Bx_B$
Diffusion velocity of species A $v_{D, A} = \dfrac{J_A}{c_A}$
Velocity relations $v_A = v_M + v_{D, A}$

Equimolar counter diffusion (EMD)

Description Equations
Equimolar counter diffusion $N_A = - N_B$
No bulk flow $N = 0$
Molar flux of species A
Molecular diffusion flux of species A
$N_A = J_A = -cD_{AB} \dfrac{\Delta x_A}{\Delta z}$
Concentration profile of species A $c_A = c_{A0} - \dfrac{J_A z}{D_{AB}}$
Concentration profile of species B $c_B = c_{B0} + \dfrac{J_A (z-L)}{D_{AB}}$

Unimolecular diffusion (UMD)

Description Equations
Stagnant B $N_B = 0$
Molar flux of species A
Bulk flow flux
$N = N_A$
Molar flux of species A $N_A = \dfrac{cD_{AB}}{z - z_1} \ln\left(\dfrac{1 - x_A}{1 - x_{A, 1}}\right)$
Molar flux of species A $N_A = -\dfrac{cD_{AB}}{(1 - x_A)_{\mathrm{LM}}} \dfrac{\Delta x_A}{\Delta z}$
Dilute A reduces UMD to EMD (no bulk flow) $(1 - x_A)_{\mathrm{LM}} \approx 1 \quad \text{if } x_A \to 0$
Log-mean $x_{\mathrm{LM}} = \dfrac{x_2 - x_1}{\ln(x_2/x_1)}$
Composition profile $x_A(z) = 1 - (1 - x_A) \exp\left[\dfrac{N_A (z - z_1)}{cD_{AB}}\right]$
Molecular diffusion and bulk flow flux of species $J_A = x_B N = - J_B$
Changing liquid level of A with stagnant B $N_A = -\dfrac{cD_{AB}}{(1 - x_A)_{\mathrm{LM}}} \dfrac{\Delta x_A}{z} = \dfrac{\rho_A}{\mathcal{M}_A}\dfrac{dz}{dt}$

Diffusivity

Diffusivity of gas mixtures

Description Equations
Fuller-Schettler-Giddings correlation
★ Low pressure (0 - 10 atm)
★ $D_{AB} \ [\mathrm{cm^2/s}]$
★ $P \ [\mathrm{atm}], T \ [\mathrm{K}]$
★ $\mathcal{M}_{AB} \ [\mathrm{g/mol}]$
$D_{AB} = D_{BA} = \dfrac{0.00143 T^{1.75}}{P \mathcal{M}_{AB}^{1/2} \left[(\sum_V)_A^{1/3} + (\sum_V)_B^{1/3}\right]^2} \newline $
Effective molecular mass $\mathcal{M}_{AB} = \dfrac{2}{\dfrac{1}{\mathcal{M}_A} + \dfrac{1}{\mathcal{M}_B}}$
Summation of atomic and structural diffusion volumes (Table 3.1) $\sum_V$
Takahashi correlation
★ High pressure (Figure 3.3)
$\dfrac{D_{AB} P}{(D_{AB}P)_{\text{low }P}} = \mathrm{const}$
Molar averaged reduced properties $T_r = x_A T_{r, A} + x_B T_{r, B} \newline P_r = x_A P_{r, A} + x_B P_{r, B}$

Diffusivity of nonelectrolyte liquid mixtures

Description Equations
Stoke-Einstein equation
★ Infinite dilution
$(D_{AB})_\infty = \dfrac{RT}{6\pi \mu_B R_A N_A} \propto \dfrac{T}{\mu_B R_A}$
Wilke-Chang equation
★ Low pressure (0 - 10 atm)
★ $D_{AB} \ [\mathrm{cm^2/s}]$
★ $\mu_B \ [\mathrm{cP}], T \ [\mathrm{K}]$
★ $\mathcal{M}_{AB} \ [\mathrm{g/mol}]$
★ $v_A \ [\mathrm{cm^3/mol}]$
$(D_{AB})_\infty = 7.4\times 10^{-8} \dfrac{(\phi_B \mathcal{M}_B)^{1/2}T}{\mu_B v_A^{0.6}}$
Hayduk-Minhas correlation
(Modified Wilke-Chang equation)
$(D_{AB})_\infty = 13/3\times 10^{-8} \dfrac{T^{1.47}\mu_B^\varepsilon}{v_A^{0.71}} \newline \varepsilon = \dfrac{10.2}{v_A} - 0.791$

Film theory for mass transfer at fluid-fluid interface

Single film theory

Description Equations
Concentration and mole fraction $c_A = x_Ac$
Mass transfer coefficient (no bulk flow) $k_c = \dfrac{D_{AB}}{\delta}$
Mass transfer coefficient (with bulk flow) $k'_c = \dfrac{D_{AB}}{\delta (1 - x_A)_{\mathrm{LM}}}$
Molar flux of species A
★ Interface (i), bulk (b)
$N_A = \pm k_c (c_{A, i} - c_{A, b}) \newline N_A = \pm k'_c (c_{A, i} - c_{A, b})$
Film thickness $\delta = \dfrac{D_{AB}}{k_c} = \dfrac{D_{AB}}{k'_c (1 - x_A)_{\mathrm{LM}}}$

Mass transfer coefficient and driving force

Driving Force Mass Transfer Coefficient Equations
Concentration (liquid) $k_c \ [\mathrm{m/s}]$ $N_A = \pm k_c (c_{A, i} - c_{A, b})$
Pressure (vapor) $k_p \ [\mathrm{mol/m^2 \cdot s \cdot Pa}]$ $N_A = \pm k_p (P_{A, i} - P_{A, b})$
Mole fraction (liquid) $k_x \ [\mathrm{mol/m^2 \cdot s}]$ $N_A = \pm k_x (x_{A, i} - x_{A, b})$
Mole fraction (vapor) $k_y \ [\mathrm{mol/m^2 \cdot s}]$ $N_A = \pm k_y (y_{A, i} - y_{A, b})$
Description Equations
Liquid phase coefficient conversion $k_x = k_c c = k_c \dfrac{\rho_L}{\mathcal{M}_L}$
Vapor phase coefficient conversion $k_y = k_p P = (k_c)_g c = (k_c)_g \dfrac{P}{RT} = (k_c)_g \dfrac{\rho_G}{\mathcal{M}_G}$
Liquid phase bulk flow correction $k' = \dfrac{k}{(1 - x_A)_{\mathrm{LM}}}$
Gas phase bulk flow correction $k' = \dfrac{k}{(1 - y_A)_{\mathrm{LM}}}$

Two-film theory

Based on Overall Mass Transfer Coefficient Equations Fictitious properties
Liquid phase $\dfrac{1}{K_L} = \dfrac{H_A}{k_p} + \dfrac{1}{k_c}$ $N_A = \pm K_L (c_A^* - c_{A, b})$ $c_A^* = P_{A, b} H_A$
Gas phase $\dfrac{1}{K_G} = \dfrac{1}{k_p} + \dfrac{1}{H_A k_c}$ $N_A = \pm K_G (P_{A, b} - P_A^*)$ $P_A^* = \dfrac{c_{A, b}}{H_A}$
Liquid phase mole fraction $\dfrac{1}{K_x} = \dfrac{1}{K_a k_y} + \dfrac{1}{k_x}$ $N_A = \pm K_y (y_{A, b} - y_{A}^*)$ $y_A^* = x_{A, b}K_A$
Gas phase mole fraction $\dfrac{1}{K_y} = \dfrac{1}{k_y} + \dfrac{K_A}{k_x}$ $N_A = \pm K_x (x_{A}^* - x_{A, b})$ $x_A^* = \dfrac{y_{A, b}}{K_A}$

Single Equilibrium Stages

Degrees of freedom

Description Equations
Gibbs' phase rule $\mathrm{DOF = component - phase + 2}$
Degree of freedom $\small\text{DOF = \# intensive variables} - \text{\# independent eqns}$
Azeotrope $x_i = y_i$
$q$-line $y_H = \left[\dfrac{(V/F) - 1}{(V/F)}\right] x_H + \left[\dfrac{1}{(V/F)}\right] z_H$

Rachford-Rice algorithm for isothermal flash calculation

Symbol Conventions
  • Molar flow rates
    • $F$ - Feed
    • $V$ - Output vapor
    • $L$ - Output liquid
  • Molar fraction of component i
    • $x_i$ - In the liquid
    • $y_i$ - In the vapor
    • $z_i$ - Overall
Description Equations
Road map Known - $K_i, z_i, F$
Solve - $\Psi \to V \to L \to x_i, y_i \to Q$
Vapor-to feed ratio $\Psi \equiv \dfrac{V}{F}$
Objective function
★ Derived from $\sum y_i - \sum x_i = 0$
$f(\Psi) = \displaystyle\sum_i \dfrac{z_i (1 - K_i)}{[1 + \Psi(K_i - 1)]} = 0$
Derivative of objective function $f'(\Psi) = \displaystyle\sum_i \dfrac{z_i (1 - K_i)^2}{[1 + \Psi(K_i - 1)]^2}$
Newton’s method for root finding $\Psi_{n+1} = \Psi_n - \dfrac{f(\Psi_n)}{f'(\Psi_n)}$
Vapor molar flow rate $V = \Psi F$
Liquid molar flow rate $L = F - V$
Vapor mole fraction $x_i = \dfrac{z_i}{1 + \Psi(K_i - 1)}$
Liquid mole fraction $y_i = \dfrac{z_i K_i}{1 + \Psi(K_i - 1)}$
Heat $Q = h_V V + h_L L - h_F F$
/cheme/cheme435/cheme435-flash-operations.png
Flash operations of flash vaporization and partial condensation. (Separation Process Principles with Applications Using Process Simulators 4e by Seader p93, Figures 4.8, 4.9.)

Bubble and dew point calculations

Description Equations
Bubble point $\Psi = 0 \newline \sum z_i K_i = 1 \newline \sum \dfrac{y_i}{P_i^* (T)} = \dfrac{1}{P}$
Dew point $\Psi = 1 \newline \sum \dfrac{z_i}{K_i} = 1 \newline \sum x_i P_i^* (T) = P$

Ternary liquid-liquid extraction

Symbol Conventions
  • Components
    • $A$ - Carrier (feed solvent)
    • $B$ - Solute
    • $C$ - Solvent
  • Mass flow rates
    • $F$ - Feed
    • $S$ - Solvent
    • $E$ - Extract (Majority of solvent $C$ carrier extracted solute $B$)
    • $R$ - Raffinate
  • Mass fraction of component i
    • $x_i$ - In the liquid
    • $y_i$ - In the vapor
    • $z_i$ - Overall
  • Mass ratio of component i
    • $X_i$ - In the liquid
    • $Y_i$ - In the vapor
Description Equations
Mass fraction $x_i = \dfrac{m_i}{m}$
Mass ratio $X_i = \dfrac{m_i}{m - m_i}$
Conversion between mass fraction and ratio $X_i = \dfrac{x_i}{1 - x_i} \newline x_i = \dfrac{X_i}{1 - X_i}$
Solute balance
★ Solvent A, Solute B
★ Feed F, Solvent S, Extract E, Raffinate R
$\begin{aligned} F_B &= E_B + R_B & \\ X_{F, B} F_A &= Y_{E, B} S + X_{R, B}F_A & Y_{E, B} = K'_{D_B} X_{R, B} \\ X_{F, B}F_A &= K'_{D_B} X_{R, B}S + X_{R, B}F_A & \\ X_{R, B} &= \dfrac{X_{F, B} F_A}{F_A + K'_{D_B} S} \end{aligned}$
Extraction factor of solute B $\mathcal{E} = \dfrac{K'_{D_B} S}{F_A}$
Fraction of solute B unextracted $\dfrac{X_{R, B}}{X_{F, B}} = \dfrac{1}{1 + \mathcal{E}}$
/cheme/cheme435/cheme435-liquid-liquid-extraction.png
Liquid-liquid extraction of ternary mixture. (Separation Process Principles with Applications Using Process Simulators 4e by Seader p98, Figure 4.12.)

Ternary phase diagram

General principles are the same for different types of ternary phase diagrams. Here, algorithm for using equilateral ternary phase diagrams is presented.

  • Identify chemical species at the apexes: feed solvent (A), feed solute (B), and pure solvent (S)
    • Apexes are pure components
    • Lines parallel to the apex are used to read values
    • Label each side of the triangle according to the apex
  • Identify compositions of entering streams: feed (F) and solvent (S)
    • Assume feed only contains A and B, and solvent is pure S
    • Calculate composition of mixture (M) with component balances
      • $x_{M, A} = \dfrac{x_{F, A} F}{F + S}, \quad x_{M, B} = \dfrac{x_{F, B} F}{F + S}, \quad x_{M, C} = \dfrac{S}{F + S}$
  • Interpolate tie line on the ternary phase diagram
  • Identify compositions of exiting streams: extract (E) and raffinate (R)
    • E and R lies on the intersection of tie line and miscibility boundary (binodal) curve
    • E has a larger S component than R (extracted component is dissolved in solvent), being closer to point S
  • Identify plait point (P)
    • P lies between E and R on the miscibility boundary curve
    • P the the point where E and R merge together and tie line collapses to a point
  • Determine flow rate ratio with inverse level rule
    • $\dfrac{E}{F + S} = \dfrac{E}{E + R} = \dfrac{\overline{MR}}{\overline{ER}}, \quad \dfrac{E}{R} = \dfrac{\overline{MR}}{\overline{ME}}$

/cheme/cheme435/cheme435-ternary-phase-diagram.png
Sample equilateral ternary phase diagram. (Separation Process Principles with Applications Using Process Simulators 4e by Seader p101, Figure 4.14.)

Multistage Cascades

Configuration Fraction of solute B unextracted
Single stage $\dfrac{X_{R, B}}{X_{F, B}} = \dfrac{1}{1 + \mathcal{E}}$
Cocurrent cascade ($N$ stages) $\dfrac{X_{N, B}}{X_{F, B}} = \dfrac{1}{1 + \mathcal{E}}$
Crosscurrent cascade ($N$ stages) $\dfrac{X_{N, B}}{X_{F, B}} = \dfrac{1}{(1 + \mathcal{E}/N)^N}$
Crosscurrent cascade ($\infty$ stages) $\dfrac{X_{\infty, B}}{X_{F, B}} = \dfrac{1}{\exp(\mathcal{E})}$
Countercurrent cascade ($N$ stages) $\dfrac{X_{R, B}}{X_{F, B}} = \left[\displaystyle\sum_{n = 0}^N \mathcal{E}^n\right]^{-1} = \dfrac{\mathcal{E} - 1}{\mathcal{E}^{N+1} - 1}$
Countercurrent cascade ($\infty$ stages) $\begin{cases} \dfrac{X_{\infty, B}}{X_{F, B}} = 0, & \mathcal{E} \in [1, \infty) \\ \dfrac{X_{\infty, B}}{X_{F, B}} = 1 - \mathcal{E}, & \mathcal{E} \in (-\infty, 1) \end{cases}$
/cheme/cheme435/cheme435-multistage-cascades.png
Multistage arrangements of cocurrent, crosscurrent, and countercurrent. (Separation Process Principles with Applications Using Process Simulators 4e by Seader p120, Figures 5.4.)

Absorption and Stripping

Graphical method for trayed towers

Symbol Conventions
  • Molar flow rates
    • $L$ - Total liquid feed
    • $V$ - Total gas feed
    • $L'$ - solute-free absorbent - constant at each stage
    • $V'$ - solute-free gas (carrier gas) - constant at each stage
  • Mole ratio of solute to solute-free absorbent
    • $X$ - In the liquid
    • $Y$ - In the vapor
/cheme/cheme435/cheme435-absorber-stripper.png
Equilibrium curve and operating lines of absorber and stripper. (Separation Process Principles with Applications Using Process Simulators 4e by Seader p144, 146, Figures 6.9, 6.12.)
  • Construct the equilibrium curve from thermodynamics
    • $K_n = \dfrac{y_n}{x_n} = \dfrac{Y_n}{X_n}\dfrac{1 + X_n}{1 + Y_n} \implies Y_n = \dfrac{K_n X_n}{1 + X_n - K_n X_n}$
  • Identify absorption and stripping process
    • Absorption - Use liquid to remove components from gas mixture
    • Stripping - Use gas to remove components from liquid mixture
  • Construct operating line for $\infty$ stages for $L'_{\min}$ or $V'_{\min}$
    • Absorption ($L'_{\min}$)
      • Identify (liquid in, gas out) = $(X_0, Y_1)$
      • Identify (liquid out, gas in) = $(X_N, Y_{N+1})$ with minimum operating line intersects and ends at the equilibrium curve
    • Stripping ($V'_{\min}$)
      • Identify (gas in, liquid out) = $(X_1, Y_0)$
      • Identify (liquid out, gas in) = $(X_{N+1}, Y_N)$ with minimum operating line intersects and ends at the equilibrium curve
    • Slope of operating line = $\dfrac{L'}{V'}$
  • Determine number of equilibrium stages for $L'$ and $V'$
    • Absorption ($L'$)
      • Construct operating line with point (liquid in, gas out) = $(X_0, Y_1)$ and slope = $\dfrac{L'}{V'}$
      • From $(X_0, Y_1)$, draw horizontal line toward the equilibrium curve and vertical lines back to the operating line until it reaches $(X_N, Y_{N+1})$
    • Stripping ($V'$)
      • Construct operating line with point (gas in, liquid out) = $(X_1, Y_0)$ and slope = $\dfrac{L'}{V'}$
      • From $(X_1, Y_0)$, draw horizontal line toward the equilibrium curve and vertical lines back to the operating line until it reaches $(X_{N+1}, Y_N)$
    • The number of equilibrium stages is the number of intersections on the equilibrium curve
      • Interpolate number of stages if not exact

Absorption

Description Equations
Absorption operating line $Y_{n+1} = X_n \dfrac{L'}{V'} + Y_1 - X_0 \dfrac{L'}{V'}$
Absorbent flow rate $L' = V' \dfrac{Y_{N+1} - Y_1}{X_N - X_0}$
Minimum absorbent flow rate ($\infty$ stages) $L'_{\min} = V' K_N \cdot (\text{fraction solute absorbed})$
Absorption factor $\mathcal{A} = \dfrac{L}{K V}$

Stripping

Description Equations
Stripping operating line $Y_{n} = X_n \dfrac{L'}{V'} + Y_0 - X_1 \dfrac{L'}{V'}$
Stripping agent flow rate $V' = L'\dfrac{X_{N} - X_1}{Y_N - Y_0}$
Minimum stripping agent flow rate ($\infty$ stages) $V'_{\min} = \dfrac{L'}{K_N} \cdot (\text{fraction solute stripped})$
Stripping factor $\mathcal{S} = \dfrac{V}{L}K$
Relating stripping factor and adsorption factor $\mathcal{S} = \dfrac{1}{\mathcal{A}}$

Stage efficiency and packed columns

Description Equations
Overall stage efficiency $E_o = \dfrac{\text{\# theoretical stages}}{\text{\# actual stages}}$
Drickamer and Bradford correlation
★ Hydrocarbons, $\mu_L \in (0.2, 1.6) \ \mathrm{cP}$
$E_o [\%] = 19.2 - 57.8 \log(\mu_L)$
Height equivalent to a theoretical plate (HETP) $\mathrm{HETP} = \dfrac{l_T}{N_t} = \dfrac{\text{packed height}}{\text{\# equiv eqm stages}}$
Packed height $l_T = H_{OG}N_{OG}$
Overall height of a transfer unit (HTU) $H_{OG} = \dfrac{V}{K_y a A_c}$
Overall number of transfer unit (NTU) $N_{OG} = \displaystyle\int_{y_{\text{out}}}^{y_{\text{in}}}\dfrac{dy}{y - y^*}$
Overall volumetric mass transfer coefficient $K_y a$

Distillation of Binary Mixtures

McCabe-Thiele graphical method for trayed towers

Symbol Conventions
  • Molar flow rates
    • $F$ - Feed
    • $D$ - Distillate
    • $B$ - Bottoms
    • $L$ - Liquid in the rectifying section, Reflux
    • $V$ - Vapor in the rectifying section
    • $\overline{L}$ - Liquid in the stripping section
    • $\overline{V}$ - Vapor in the stripping section, Boilup
  • Mole fraction of the light key component
    • $x$ - In the liquid
    • $y$ - In the vapor
    • $x_D$ - In the distillate
    • $x_B$ - In the bottoms
  • Ratio
    • $\alpha_{1, 2}$ - Relative volatility
    • $R$ - Reflux ratio
    • $V_B$ - Boilup ratio
Description Equations
McCabe-Thiele assumptions 1. Equal and constant $\Delta H_{\text{vap}}$
2. Negligible $C_P \Delta T$ and $\Delta H_{\text{mix}}$
3. Insulated column $q = 0$
4. No pressure drop $\Delta P = 0$
Constant molar overflow in rectifying section $L_1 = L_i = L \newline V_1 = V_i = V$
Constant molar overflow in stripping section $\overline{L}_1 = \overline{L}_i = \overline{L} \newline \overline{V}_1 = \overline{V}_i = \overline{V}$
Non-equal flow rate in rectifying and stripping sections $L \not= \overline{L} \newline V \not= \overline{V}$
Reflux ratio $R = \dfrac{L}{D}$
Boilup ratio $V_B = \dfrac{\overline{V}}{B}$
Equilibrium curve $y_1 = \dfrac{\alpha_{1, 2}x_1}{1 + x_1(\alpha_{1, 2} - 1)}$
Rectifying section operating line $y = \left(\dfrac{R}{R + 1}\right)x + \left(\dfrac{x_D}{R + 1}\right)$
Stripping section operating line $y = \left(\dfrac{V_B + 1}{V_B}\right)x - \left(\dfrac{x_B}{V_B}\right)$
$q$-parameter $\begin{cases} q > 1 & \text{subcooled liq} \\ q = 1 & \text{saturated liq (bubble pt)} \\ q \in (0, 1) & \text{liq + vap} \\ q = 0 & \text{saturated vap (dew pt)} \\ q < 0 & \text{superheated vap} \end{cases}$
$q$-parameter $q = \dfrac{\overline{L} - L}{F} = 1 + \dfrac{\overline{V} - V}{F}$
$q$-line $y = \left(\dfrac{q}{q - 1}\right)x + \left(\dfrac{z_F}{q - 1}\right)$

Limiting conditions

Description Equations
Total reflux
(Useless)
$R_\infty = \infty \newline N_{\min} = 0 \newline L = V \newline D = B = 0$
Minimum reflux $R_{\min} = \dfrac{(L/V)_{\min}}{1 - (L/V)_{\min}} \newline N_\infty = \infty \newline V_{B, \min} = \dfrac{1}{(\overline{L}/\overline{V})_{\min} - 1}$
Perfect separation $x_D = 1, \quad x_B = 0 \newline R \ge R_{\min} \begin{cases} R_{\min} = \dfrac{1}{z_F (\alpha_{1, 2} - 1)} & q = 1 \\ R_{\min} = \dfrac{\alpha_{1, 2}}{z_F (\alpha_{1, 2} - 1)} - 1 & q = 0 \end{cases}$
/cheme/cheme435/cheme435-distillation.png
Equilibrium curve and operating lines of rectifying and stripping sections of distillation column. Optimal feed stage is indicated by the transition between operating lines on the equilibrium curve. (Separation Process Principles with Applications Using Process Simulators 4e by Seader p195, 196, 197, 200, Figures 7.5, 7.6, 7.7, 7.10.)

Membrane Separations

Description Equations
Transmembrane molar flux $\begin{aligned}N_i &= \dfrac{P_{M, i}}{l_M} \cdot (\text{driving force}) \\ &= \bar{P}_{M, i} \cdot (\text{driving force}) \end{aligned}$
Permeance $\bar{P}_{M, i} = \dfrac{P_{M, i}}{l_M}$
Permeability $P_{M, i} = \bar{P}_{M, i} l_M$
Selectivity $S_{i, j} = \dfrac{P_{M, i}}{P_{M, j}}$
Gas permeability unit $\begin{aligned}&1 \ \mathrm{barrer} \\ &= 10^{-10} \ \mathrm{cm^3_{STP} \cdot cm/(cm^2 \cdot s \cdot cmHg)} \\ &= 3.35 \times 10^{-16} \ \mathrm{mol \cdot m / (m^2 \cdot s \cdot Pa)} \\ &= 5.58 \times 10^{-12} \ \mathrm{lbmol \cdot ft / (ft^2 \cdot h \cdot psi)}\end{aligned}$
Mole of gas in standard temperature and pressure (STP) $1 \ \mathrm{mol} \sim 22.4 \ \mathrm{L_{STP}}$

Transport through porous membranes

Bulk flow

Description Equations
Hagen-Poiseuille flow
★ Laminar flow $\mathrm{Re} < 2100$
$v = \dfrac{D^2}{32\mu L}(P_0 - P_L)$
Pore number density $n = \dfrac{n_\text{total}}{A_c} = \dfrac{\text{total \# of pores}}{\text{membrane cross sectional area}}$
Porosity (void fraction)
★ Straight cylindrical pore
$\varepsilon = \frac{1}{4}n\pi D^2$
Bulk flow flux
★ Straight cylindrical pore
$\begin{aligned}N &= v\rho\varepsilon \\ &= \dfrac{\varepsilon\rho D^2}{32 \mu l_M} (P_0 - P_L) \\ &= \dfrac{n\pi\rho D^4}{128 v l_M}(P_0 - P_L)\end{aligned}$
Empirical hydraulic diameter $d_H = \dfrac{4\varepsilon}{a_v}$
Specific surface area $a_v = \dfrac{a}{1 - \varepsilon}$
Total pore surface area $a = a_v (1 - \varepsilon)$
Tortuosity correction of membrane width $\tau l_M$
Bulk flow flux
★ General pore
$N = \dfrac{\rho\varepsilon^2}{2(1-\varepsilon)^2 \tau a_v^2 \mu l_M}(P_0 - P_L)$
Ergun equation $\dfrac{P_0 - P_L}{l_M} = \dfrac{150 \mu v_0 (1-\varepsilon)^2}{D_P^2 \varepsilon^3} + \dfrac{1.75 \rho v_0^2 (1 - \varepsilon)}{D_P \varepsilon^3}$
Mean spherical particle diameter $D_P = \dfrac{6}{a_v}$

Liquid diffusion

Description Equations
Concentration driving force $\Delta c \not= 0 \newline \Delta P = 0$
Transmembrane mass flux $N_i = \dfrac{D_{e, i}}{l_M}(c_{i, 0} - c_{i, L})$
Effective diffusivity $D_{e, i} = \dfrac{\varepsilon D_i}{\tau} K_{r, i}$
Restrictive factor of solute $K_r = \left[ 1 - \dfrac{d_m}{d_p}\right]^4$
Selectivity $S_{i, j} = \dfrac{D_i K_{r, i}}{D_j K_{r, j}}$

Gas diffusion

Description Equations
Transmembrane molar flux
★ Ideal gas, uniform transmembrane T, P
$\begin{aligned} N_i &= \dfrac{c_M}{P}\dfrac{D_{e, i}}{l_M}(P_{i, 0} - P_{i, L}) \\ &= \dfrac{1}{RT}\dfrac{D_{e, i}}{l_M}(P_{i, 0} - P_{i, L}) \end{aligned}$
Effective diffusivity $D_{e, i} = \dfrac{\varepsilon}{\tau} \left[\dfrac{1}{(1/D_i) + (1/D_{K, i})}\right]$
Knudsen diffusivity of straight cylindrical pore
★ Kinetic theory of gas
$D_{K, i} \ [\mathrm{cm/s}] = 4850 d_p \ [\mathrm{cm}] \sqrt{\dfrac{T}{\mathcal{M}_i}\dfrac{[\mathrm{K}]}{[\mathrm{g/mol}]}}$
Selectivity of Knudsen diffusion
★ $D_i \gg D_{K, i}$
★ $D_{e, i} \sim D_{K, i}$
$S_{i, j} = \dfrac{P_{M, i}}{P_{M, j}} = \sqrt{\dfrac{\mathcal{M}_j}{\mathcal{M}_i}}$

Transport through nonporous (dense) membranes

Solution-diffusion of liquid mixtures

Description Equations
Thermodynamic equilibrium partition coefficient $K_i = \dfrac{c_i}{c_i'}$
Transmembrance mass flux
★ Fick’s law
$N_i = \dfrac{D_i}{l_M}(c_{i, 0} - c_{i, L})$
Transmembrance mass flux
★ $K_{i, 0} = K_{i, L} = K_{i}$
$N_i = \dfrac{K_i D_i}{l_M}(c'_{i, 0} - c'_{i, L})$
Transmembrance mass flux
★ No mass transfer resistance in fluid boundary layers
★ $c'_{i, 0} = c_{i, F}$ and $c'_{i, L} = c_{i, P}$
$N_i = \dfrac{K_i D_i}{l_M}(c_{i, F} - c_{i, P})$

Solution-diffusion of gas mixtures

Description Equations
Henry’s constant $H_i = \dfrac{c_i}{P_i}$
Transmembrance mass flux
★ Fick’s law
$N_i = \dfrac{D_i}{l_M}(c_{i, 0} - c_{i, L})$
Transmembrance mass flux
★ $H_{i, 0} = H_{i, L} = H_{i}$
$N_i = \dfrac{H_i D_i}{l_M}(P_{i, 0} - P_{i, L})$
Transmembrance mass flux
★ No mass transfer resistance in external boundary layers
★ $P_{i, 0} = P_{i, F}$ and $P_{i, L} = P_{i, P}$
$N_i = \dfrac{H_i D_i}{l_M}(P_{i, F} - P_{i, P})$

Separation factor

Description Equations
Ideal separation factor
★ Downstream permeate pressure negligible compared to upstream feed pressure
★ $x_{i, P} P_P \ll x_{i, F} P_F$ and $x_{j, P} P_P \ll x_{j, F} P_F$
$\alpha^*_{i, j} = \dfrac{H_i D_i}{H_j D_j} = \dfrac{P_{M, i}}{P_{M, j}}$
Separation factor $\alpha_{i, j} = \alpha^*_{i, j} \left[\dfrac{(x_{j, F} / x_{j, P}) - r\alpha_{i, j}}{(x_{j, F} / x_{j, P}) - r}\right]$
Cut (fraction of feed permeated) $\theta = \dfrac{\dot{n}_P}{\dot{n}_F}$

Summary of transport through membranes

Type of transport Permselective Membrane Type Driving Force Permeability
(L) Bulk flow No Macroporous $\Delta P$ $\begin{aligned}P_M = \dfrac{\rho\varepsilon^3}{2(1 - \varepsilon)^2 \tau a_v^2 \mu}\end{aligned}$
(L) Molecular diffusion Yes Microporous $\Delta c$ $P_M = D_{e, i} = \dfrac{\varepsilon D_i K_{r, i}}{\tau}$
(G) Molecular diffusion
★ high P
★ $d_p > d_m$
Yes Microporous $\Delta P_i \newline \Delta P = 0$ $P_{M, i} = \dfrac{D_{e, i}}{RT}$
(G) Knudsen diffusion
★ low P
★ $d_p \sim d_m$
Yes Microporous $\Delta P_i \newline \Delta P = 0$ $P_{M, i} = \dfrac{D_{e, i}}{RT}$
(L) Solution diffusion Yes Nonporous (dense) $\Delta c$ $P_{M, i} = K_i D_i$
(G) Solution diffusion Yes Nonporous (dense) $\Delta P_i \newline \Delta P = 0$ $P_{M, i} = H_i D_i$

Reverse osmosis

Description Equations
Osmotic pressure
★ Equilibrium
$\Pi \equiv P_1 - P_{\ce{H2O}}$
Osmotic pressure of water $\Pi_{\ce{H2O}} = 0$
Osmotic process $P_1 - P_{\ce{H2O}} < \Pi$
Reverse osmotic process $P_1 - P_{\ce{H2O}} > \Pi$
Osmotic pressure’s thermodynamic derivation
★ Between pure water and solution
★ Solvent $A$, solute $B$
$\Pi = -\dfrac{RT}{v_{A}} \ln(x_A \gamma_A)$
Osmotic pressure
★ Ideal solution, dilute $B$
$\Pi = \dfrac{RT n_B}{v_A} = \dfrac{RTc_B}{\mathcal{M}_B}$

Seawater reverse osmosis

Description Equations
Seawater as solution 1; salt as solute B $\ce{A} = \text{water} = \ce{H2O} \newline \ce{B} = \text{salt} = \ce{S}$
Molar mass $\mathcal{M} = \dfrac{m}{n}$
Molarity (molar concentration) $M = \dfrac{n}{V} = \dfrac{\mathrm{wt \% \ S}}{100 \% - \mathrm{wt \% \ S}}\dfrac{\rho_{\ce{H2O}}}{\mathcal{M}_S}$
Seawater osmotic pressure correlation $\Pi \ [\mathrm{psia}] = 1.12 T \ [\mathrm{K}] \sum M_i \ [\mathrm{mol/L}]$
Transmembrane molar flux of water (solvent A) $N_{\ce{H2O}} = \dfrac{P_{M, \ce{H2O}}}{l_M} (\Delta P - \Delta \pi)$
Salt passage $\mathrm{SP} = \dfrac{c_{S, P}}{c_{S, F}}$
Salt rejection $\mathrm{SR} = 1 - \mathrm{SP}$
Concentration polarization factor $\Gamma \equiv \dfrac{c_{S, i} - c_{S, F}}{c_{S, F}} = \dfrac{N_{\ce{H2O}} (\mathrm{SR})}{k_S}$
Significant concentration polarization $\Gamma > 0.2$