Thermodynamic Properties and Data
Description |
Equations |
Mechanical equilibrium |
Psys=Psurr |
Thermal equilibrium |
Tsys=Tsurr |
Chemical equilibrium |
μ(t1)=μ(t2) |
Gibbs phase rule |
F=2+c−p−r |
Quality |
x=nl+nvnv=vv−vlv−vl |
Critical point |
(∂v∂P)Tc=0,(∂v2∂2P)Tc=0 |
System Type |
Equations |
Closed systems |
Δu+ΔeK+ΔeP=q+w |
Closed systems |
Δu=q+w |
Open systems |
dtdU=in∑n˙ihi+out∑n˙ihi+Q˙+W˙s |
Open system at steady state |
0=in∑n˙ihi+out∑n˙ihi+Q˙+W˙s |
Description |
Equations |
Work |
w=−∫Pextdv |
Enthalpy |
h=u+Pv |
Efficiency of irreversible isothermal expansion |
η=wrevwirrev |
Efficiency of irreversible isothermal compression |
η=wirrevwrev |
Description |
Equations |
Constant volume heat capacity |
cv=(∂T∂u)v |
Constant pressure heat capacity |
cP=(∂T∂h)P |
Ideal gas heat capacity |
cP=cv+R |
Condensed phase heat capacity (l, s) |
cP≈cv |
Mean heat capacity of gas |
cˉP=T2−T11∫T1T2cP(T)dT |
Description |
Equations |
Enthalpy of vaporization |
Δhvap=hv−hl |
Enthalpy of fusion |
Δhfus=hs−hl |
Enthalpy of sublimation |
Δhsub=hv−hs |
Enthalpy of phase change at any T |
Δhvap(T)=Δhvap(Tb)+∫TbT(cPv−cPl)dT |
Enthalpy of reaction |
Δhrxn∘=∑νiΔhf,i |
System Type |
Equations |
Isolated system |
ΔSuniv≥0 |
Closed system |
ΔSsys−TsurrQsys≥0 |
Open system |
out∑n˙isi−in∑n˙isi−TsurrQ˙+dtdS≥0 |
Open system at steady state |
out∑n˙isi−in∑n˙isi−TsurrQ˙≥0 |
Description |
Equations |
Entropy |
ds=Tδqrev |
Description |
γ |
Equation |
Polytropic |
- |
PVγ=const |
Isobaric |
0 |
P=const |
Isothermal |
1 |
PV=const |
Isentropic |
k=cvcP |
PVk=const |
Isochoric |
∞ |
V=const |
Isoenergetic process (Δu=0⟹ΔT=0) of ideal gas has similar analysis.
Description |
Equations |
Condition ★ Ideal gas |
ΔT=0 |
Internal energy change |
Δu=0 |
Enthalpy change |
Δh=0 |
First law |
Δu=q+w=0 |
Work (changing volume) |
w=−∫vRTdv=−RTln(v1v2) |
Work (changing pressure) |
w=∫PRTdP=RTln(P1P2) |
Heat |
q=−w |
Entropy change |
Δs=∫Tδq=Tq=−Tw |
Entropy change (changing volume) |
Δs=Rln(v1v2) |
Entropy change (changing concentration) |
Δs=−Rln(c1c2) |
Entropy change (changing pressure) |
Δs=−Rln(P1P2) |
Description |
Equations |
Condition ★ Ideal gas |
q=0 |
First law |
Δu=w |
Enthalpy change |
Δh=Δu+RΔT |
Work (changing volume) |
w=−∫vRTdv=−RTln(v1v2) |
Work (changing pressure) |
w=∫PRTdP=RTln(P1P2) |
Entropy change |
Δs=0 |
Heat capacity ratio |
γ=cvcP |
PVT relationship |
P1V1γ=P2V2γT1V1γ−1=T2V2γ−1P1(1/γ)−1T1=P2(1/γ)−1T2 |
Description |
Equations |
Condition ★ Ideal gas |
Δv=0 |
Work |
w=0 |
Internal energy change |
Δu=∫cv dT |
First law |
q=Δu |
Entropy change |
Δs=∫Tδq=∫Tdu=∫Tcv dT |
Description |
Equations |
Condition ★ Ideal gas |
ΔP=0 |
Internal energy change |
Δu=∫cv dT |
Enthalpy change |
Δh=∫cp dT |
Work |
w=−PΔv |
Heat |
q=Δh |
Entropy change |
Δs=∫Tδq=∫Tdh=∫Tcp dT |
Description |
Equations |
Net work |
−Wnet=∣W12∣+∣W23∣−∣W34∣−∣W41∣ |
Net work and heat |
−Wnet=∣QH∣−∣QC∣ |
Carnot efficiency |
η=1−TCTH |
State properties after cycle |
Δucycle=0Δhcycle=0Δscycle=0 |
Entropy change of surrounding |
Δssurr=0=−THqH−TCqC |
Carnot cycle. (Episode C1 - Process Efficiency by Stu Adler UW)
Carnot cycle diagrams. (Episode C1 - Process Efficiency by Stu Adler UW)
Description |
Equations |
Open system balance |
0=m˙1(h^+21v2+gz)1−m˙2(h^+21v2+gz)2 |
Shaft work |
w˙s=∫v dP+Δe˙K+Δe˙P |
Nozzle, diffuser simplifications |
0=ΔEP=Q˙=W˙s |
Turbine, pump, compressor simplifications |
0=ΔEK=Q˙ |
Heat exchanger simplifications |
0=ΔEP=ΔEK=W˙s |
Throttling device simplifications |
0=ΔEP=ΔEK=Q˙=W˙s |
Description |
Equations |
Turbine |
w˙s=h2−h1q˙=0 |
Condenser |
q˙=h3−h2w˙s=0 |
Compressor |
w˙c=h4−h3=vΔPq˙=0 |
Boiler |
q˙=h1−h4w˙s=0 |
Efficiency |
η=q˙h∣w˙s∣−w˙c=h1−h4∣h2−h1∣−(h4−h3) |
Net work |
w˙net=q˙H−∣q˙C∣=∣w˙s∣−w˙c |
Ideal Rankine cycle. (Engineering and Chemical Thermodynamics 2e by Koretsky p164.)
Description |
Equations |
Evaporator |
q˙=h2−h1w˙s=0 |
Compressor |
w˙s=h3−h2q˙=0 |
Condenser |
q˙=h4−h3w˙s=0 |
Value |
w˙s=0q˙=0Δh=0Δs>0 (irreversible expansion) |
Coefficient of performance |
COP=W˙cQ˙C=h3−h2h2−h1 |
Ideal refrigeration cycle. (Engineering and Chemical Thermodynamics 2e by Koretsky p170.)
Description |
Equations |
Conservative force |
Fij=−∇Γij |
Potential |
Γij=−∫Fij dr |
Description |
Equations (SI unit) |
Coulomb interaction (electrostatic, point charges) |
Γij(r)=4πε0QiQjr1 |
Dipole-dipole interaction (polar, electric dipole, Keesom) |
Γij(r)=−3(2)(4πε0)2μi2μj2kT1r61 |
Dipole-induced dipole interaction (induction, Debye) |
Γij(r)=−(4πε0)2αiμj2r61 |
Induced dipole-induced dipole interaction (dispersion, London) |
Γij(r)=−23(4πε0)2αiαjIi+IjIiIjr61 |
Description |
Equations (SI unit) |
van der Waals interaction |
Γijvdw=ΓijK+ΓijD+ΓijL=−r6Cvdw |
Keesom coefficient |
CK=3(2)(4πε0)2μi2μj2kT1 |
Debye coefficient |
CD=(4πε0)2αiμj2+αjμi2 |
London coefficient |
CL=23(4πε0)2αiαjIi+IjIiIj |
Description |
Equations (CGS unit) |
Coulomb interaction (electrostatic, point charges) |
Γij(r)=rQiQj |
Dipole-dipole interaction (polar, electric dipole, Keesom) |
Γij(r)=−3(2)kTμi2μj2r61 |
Dipole-induced dipole interaction (induction, Debye) |
Γij(r)=−r6αiμj2 |
Induced dipole-induced dipole interaction (dispersion, London) |
Γij(r)=−23r6αiαjIi+IjIiIj |
Description |
Equations (CGS unit) |
van der Waals interaction |
Γijvdw=ΓijK+ΓijD+ΓijL=−r6Cvdw |
Keesom coefficient |
CK=3(2)kTμi2μj2 |
Debye coefficient |
CD=αiμj2+αjμi2 |
London coefficient |
CL=23αiαjIi+IjIiIj |
Description |
Equations (SI unit) |
Hard sphere model |
Γ={0∞r>σr≤σ |
Surtherland model |
Γ=⎩⎪⎨⎪⎧−r6Cvdw∞r>σr≤σ |
Lennard-Jones potential |
Γ=r12Crep−r6Cvdw |
Lennard-Jones potential |
Γ=4ε[(rσ)12−(rσ)6] |
Description |
Equations |
Ideal gas law |
Pv=RT |
Compressibility factor |
z=RTPv |
Reduced temperature |
Tr=TcT |
Reduced pressure |
Pr=PcP |
Pitzer acentric factor |
ω=−1−log10[Prsat(Tr=0.7)] |
Generalized compressibility |
z=z(0)+ωz(1) |
Description |
Equations |
van der Waals EOS (pressure explicit form) |
P=v−bRT−v2a |
van der Waals EOS (cubic form) |
Pv3−(RT+Pb)v2+av−ab=0 |
van der Waals EOS (reduced form) |
P=3vr−18Tr−vr23 |
Intermolecular force (pressure) correction |
a=6427Pc(RTc)2 |
Volume correction |
b=8PcRTc |
Critical compressibility factor |
zc=83 |
Description |
Equations |
Redlich-Kwong EOS |
P=v−bRT−Tv(v+b)a |
Intermolecular force (pressure) correction |
a=0.42748PcR2Tc2.5 |
Volume correction |
b=0.08664PcRTc |
Critical compressibility factor |
zc=31 |
Description |
Equations |
Peng-Robinson EOS |
P=v−bRT−v(v+b)+b(v−b)aα(T) |
Intermolecular force (pressure) correction |
a=0.45724PcR2Tc2 |
Volume correction |
b=0.07780PcRTc |
Constant |
α(T)=[1+κ(1−Tr)]2 |
Constant |
κ=0.37464+1.54226ω−0.26992ω2 |
Critical compressibility factor |
zc=0.307 |
Description |
Equations |
Virial EOS |
z=RTPv=1+vB+v2C+v3D+⋯ |
Second virial coefficient |
B=PcRTcBr |
Reduced second virial coefficient |
Br=B(0)+ωB(1) |
0th order correction |
B(0)=0.083−Tr1.60.422 |
1st order correction |
B(1)=0.139−Tr4.20.172 |
Description |
Equations |
a for binary mixtures |
amix=y12a1+2y1y2a12+y22a2 |
a of different species interaction |
a12=a1a2(1−k12) |
b for binary mixtures |
bmix=y1b1+y2b2 |
a for multicomponent mixtures |
amix=i∑j∑yiyjaij |
b for multicomponent mixtures |
bmix=i∑yibi |
Description |
Equations |
Second virial coefficient for binary mixture |
Bmix=y12B11+2y1y2B12+y22B22 |
Second virial coefficient for multicomponent mixture |
Bmix=i∑j∑yiyjBij |
Third virial coefficient for multicomponent mixture |
Cmix=i∑j∑k∑yiyjykCijk |
Description |
Equations |
Pseudocritical temperature |
Tpc=∑yiTc,i |
Pseudocritical pressure |
Ppc=∑yiPc,i |
Pseudocritical acentric factor |
ωpc=∑yiωc,i |
EOS for liquids and solids
Description |
Equations |
Thermal expansion coefficient |
β=v1(∂T∂v)P |
Isothermal compressibility |
κ=−v1(∂P∂v)T |
Rackett equation |
vlsat=PcRTc(0.29056−0.08775ω)(1+(1−Tr)2/7) |
Description |
Equations |
Total differential |
dz=(∂x∂z)ydx+(∂y∂z)xdy |
Clairaut’s theorem Symmetry of second derivative |
∂x∂(∂y∂z)=∂y∂(∂x∂z) |
Chain rule |
∂x∂z=∂y∂z∂x∂y |
Cyclic relation Triple chain rule |
(∂y∂x)z(∂z∂y)x(∂x∂z)y=−1 |
Relations |
Internal energy u |
Enthalpy h |
Helmholz energy a |
Gibbs energy g |
Definition |
- |
h=u+Pv |
a=u−Ts |
g=h−Ts |
Fundamental property relations |
du=Tds−Pdv |
dh=Tds+vdP |
da=−sdT−Pdv |
dg=−sdT+vdP |
Fundamental grouping |
{u,s,v} |
{h,s,P} |
{a,T,v} |
{g,T,P} |
Fundamental grouping relations |
(∂s∂u)v=T |
(∂s∂h)P=T |
(∂T∂a)v=−s |
(∂T∂g)P=−s |
Fundamental grouping relations |
(∂v∂u)s=−P |
(∂P∂h)s=v |
(∂v∂a)T=−P |
(∂P∂g)T=v |
Maxwell’s relations |
(∂v∂T)s=−(∂s∂P)v |
(∂P∂T)s=(∂s∂v)P |
(∂v∂s)T=(∂T∂P)v |
(∂P∂s)T=−(∂T∂v)P |
Thermodynamic relations. (Engineering and Chemical Thermodynamics 2e by Koretsky p274.)
Description |
Equations |
Constant volume heat capacity |
cv=(∂T∂u)v=T(∂T∂s)v |
Constant pressure heat capacity |
cP=(∂T∂h)P=T(∂T∂s)P |
Constant volume heat capacity of real gas |
cvreal=cvideal+∫videalvreal[T(∂T2∂2P)v]dv |
Constant pressure heat capacity of real gas |
cPreal=cPideal−∫PidealPreal[T(∂T2∂2v)P]dP |
Thermal expansion coefficient |
β=v1(∂T∂v)P |
Thermal expansion coefficient of ideal gas |
β=T1 |
Isothermal compressibility |
κ=−v1(∂P∂v)T |
Isothermal compressibility of ideal gas |
κ=P1 |
Description |
Equations |
Entropy change s(T,v) |
ds=TcvdT+(∂T∂P)vdv |
Entropy change s(T,P) |
ds=TcPdT+(∂T∂v)PdP |
Internal energy change u(T,v) |
du=cvdT+[T(∂T∂P)v−P]dv |
Enthalpy change h(T,P) |
dh=cPdT+[−T(∂T∂v)P+v]dP |
General f(T,P) |
Ideal gas β=T1,κ=P1 |
ds=TcPdT−βv dP |
ds=TcPdT−PRdP |
dv=βv dT−κv dP |
dv=TvdT−PvdP |
du=(cP−βPv)dT+(κPv−βvT)dP |
du=(cP−R)dT |
dh=(cP−βPv)dT+v dP |
dh=cP dT |
da=−s dT+(κPv−βvT)dP |
da=−s dT |
dg=−s dT+v dP |
dg=−s dT+v dP |
Description |
Equations |
General departure function |
dep=real−ideal |
Enthalpy departure function |
Δhdep=hreal−hideal |
Entropy departure function |
Δsdep=sreal−sideal |
Dimensionless enthalpy departure function |
RTcΔhdep=Tr2∫0P[−Pr1(∂Tr∂z)P]dPr |
Dimensionless entropy departure function |
RΔsdep=∫0P−[Prz−1+PrTr(∂Tr∂z)P]dPr |
Dimensionless enthalpy departure function with Lee-Kesler EOS |
RTcΔhdep=[RTcΔhdep](0)+ω[RTcΔhdep](1) |
Dimensionless entropy departure function with Lee-Kesler EOS |
RΔsdep=[RΔsdep](0)+ω[RΔsdep](1) |
Description |
Equations |
Joule-Thomson expansion Adiabatic reversible throttling |
q˙=0w˙s=0Δh=0 |
Joule-Thomson coefficient |
μJT=(∂P∂T)h |
Joule-Thomson coefficient |
μJT=cPreal[−T(∂T∂v)P+v] |
Description |
Equations |
Gibbs free energy |
g=h−Ts |
Second law of thermodynamics |
dGi≤0 |
Criteria for chemical equilibrium |
giα=giβ |
Clapeyron equation General phase equilibrium |
dTdP=ΔvΔs=TΔvΔh |
Clausius-Clapeyron equation ★ Vapor-liquid equilibrium ★ Ideal gas, negligible liquid volume |
PsatdPsat=RT2ΔhvapdT |
Clausius-Clapeyron equation ★ Vapor-liquid equilibrium ★ Ideal gas, negligible liquid volume ★ Δhvap independent of T |
lnP1satP2sat=−RΔhvap(T21−T11) |
Antoine’s equation |
lnPsat=A−C+TB |
Description |
Equations |
Extensive total solution (mixture) property |
K |
Intensive total solution (mixture) property |
k=nK |
Extensive pure species property |
Ki |
Intensive pure species property |
ki=niKi |
Partial molar property |
Ki=(∂ni∂K)T,P,nj=i |
Limiting case of partial molar property |
xi→1limKi=kixi→0limKi=Ki∞ |
Differential of extensive property |
dK=(∂T∂K)P,nidT+(∂P∂K)T,nidP+∑Kidni |
Relation between properties ★ Constant T, P |
K=∑niKik=∑xiKi |
Gibbs-Duhem equation ★ Constant T, P |
∑nidKi=0 |
Corollary of Gibbs-Duhem equation ★ Binary mixture |
x1dx1dK1+x2dx1dK2=0 |
Description |
Equations |
Extensive property change of mixing |
ΔKmix=K−∑nikiΔKmix=∑ni(Ki−ki) |
Intensive property change of mixing |
Δkmix=k−∑xikiΔkmix=∑xi(Ki−ki) |
Enthalpy of mixing |
Δhmix=∑xi(hi−hi) |
Enthalpy of mixing |
Δhmix=n+1Δh~s=Δh~sx1 |
Enthalpy of solution |
Δh~s=x1Δhmix=Δhmix(n+1) |
Entropy of mixing ★ Ideal gas, regular solution |
Δsmix=−R∑yilnyi |
Partial molar property change of mixing |
ΔKmix,i=Ki−ki |
Description |
Equations |
Partial molar volume of species 1 ★ Virial EOS |
V1=PRT+(y12+2y1y2)B11+2y22B12−y22B22 |
Partial molar volume of species 2 ★ Virial EOS |
V2=PRT−y12B11+2y12B12+(y22+2y1y2)B22 |
Volume change of mixing ★ Virial EOS |
Δvmix=y1y2(2B12−B11−B22) |
Partial molar property |
Ki=ki+ΔKmix,i |
Graphical method Slope is difference |
dx1dk=K1−K2 |
Graphical method K2 is intercept |
k=x1dx1dk+K2 |
Graphical method K2 explicit |
K2=k−x1dx1dk |
T and P dependence of Gi
Description |
Equations |
Partial molar Gibbs energy dependence on temperature |
(∂T∂Gi)P,ni=−Si |
Partial molar Gibbs energy dependence on temperature (measurable) |
[∂T∂(TGi)]P,ni=−T2Hi |
Partial molar Gibbs energy dependence on pressure |
(∂P∂Gi)T,ni=−Vi |
Description |
Equations |
Chemical potential |
μi=Gi=(∂ni∂G)T,P,nj=i |
Criteria for chemical equilibrium |
μiα=μiβ |
General multicomponent equilibrium |
Δ[−T2HidT−TVidP+T1[∂xi∂μi]T,Pdxi]=0 |
Vapor liquid equilibrium ★ Ideal gas |
−T2hivdT−RPdP+Rxivdxiv=−T2HildT−TVildP+T1[∂xi∂μil]T,Pdxi |
Description |
Equations |
Definition of fugacity of pure species ★ Constant T |
gi−gi∘=RTln(fi∘fi)P→0limφi=1 |
Fugacity of pure species ★ Constant T |
fi=φiP |
Fugacity coefficient of pure species |
φi=Pfi |
Definition of fugacity of species i in mixture |
μi−μi∘=RTln(f^i∘f^i)P→0limφ^i=1 |
Fugacity of species i in mixture |
f^i=yiPφ^i |
Fugacity coefficient of species i in mixture ★ Constant T |
φ^i=pif^i=yiPf^i |
Criteria for chemical equilibrium |
f^iα=f^iβ |
Description |
Equations |
Reference state ★ Ideal gas |
P∘=PlowT∘=Tsysf^i∘=P∘ |
Fugacity of pure species ★ Constant T |
fi=φiP |
Fugacity coefficient of pure species |
φi=Pfi |
Fugacity from experimental data |
fiv=P∘exp(RTgi−gi∘) |
Fugacity coefficient from experimental data |
φi=PP∘exp(RTgi−gi∘) |
Fugacity from EOS |
RTln(P∘fiv)=∫P∘Pvi dP |
Fugacity coefficient from EOS |
φi=PP∘exp[RT1∫P∘Pvi dP] |
Fugacity coefficient from vdW EOS |
lnφiv=−ln[RT(vi−b)P]+vi−bb−RTvi2a |
Fugacity coefficient from virial form of vdW EOS |
lnφiv=(b−RTa)RTP |
Fugacity coefficient from generalized correlations |
lnφiv=∫P∘P(zi−1)PdP |
Generalized fugacity coefficient with Lee-Kesler EOS |
logφi=logφ(0)+ωlogφ(1) |
Description |
Equations |
Reference state ★ Ideal gas |
P∘=PlowT∘=Tsysni∘=ni,sysfi∘=yiP∘V∘=P∘nRT |
Fugacity of species i in mixture ★ EOS ★ Full i-j interaction |
f^i=yiφ^iP |
Fugacity of species i in mixture ★ Lewis fugacity rule ★ Same species interaction only, i-i interaction |
f^i=yiφiPφ^i=φi |
Fugacity of species i in mixture ★ Ideal gas, no interaction |
f^i=yiPφ^i=1 |
Fugacity coefficient of species i in mixture ★ Constant T |
φ^i=pif^i=yiPf^i |
Fugacity coefficient from v-explicit EOS |
φ^i=PP∘exp[RT1∫P∘PVi dP] |
Fugacity coefficient from P-explicit EOS |
φ^i=PP∘exp[−RT1∫V∘VPi dV] |
Description |
van der Waals EOS |
Pure species i |
lnφi=vi−bibi−ln(RT(vi−bi)P)−RTvi2ai |
Species 1 in a binary mixture |
lnφ^1=v−bb1−ln(RT(v−b)P)−RTv2(y1a1+y2a12) |
Species i in a mixture |
lnφ^i=v−bbi−ln(RT(v−b)P)−RTv2k=1∑mykaik |
Description |
Redlich-Kwong EOS |
Pure species i |
lnφi=zi−1−ln(RT(vi−bi)P)−biRT1.5ailn(1+vibi) |
Species 1 in a binary mixture |
lnφ^1=bb1(z−1)−ln(RT(v−b)P)+bRT1.51[bab1−2(y1a1+y2a12)]ln(1+vb) |
Species i in a mixture |
lnφ^i=bbi(z−1)−ln(RT(v−b)P)+bRT1.51[babi−2k=1∑mykaik]ln(1+vb) |
Description |
Peng-Robinson EOS |
Pure species i |
lnφi=zi−1−ln(RT(vi−bi)P)−22biRT(aα)iln[vi+(1−2)bivi+(1+2)bi] |
Species 1 in a binary mixture |
lnφ^1=bb1(z−1)−ln(RT(v−b)P)+22bRTaα[bb1−aα2(y1(aα)1+y2(aα)12)]ln[v+(1−2)bv+(1+2)b] |
Species i in a mixture |
lnφ^i=bbi(z−1)−ln(RT(v−b)P)+22bRTaα[bbi−aα2k=1∑myk(aα)ik]ln[v+(1−2)bv+(1+2)b] |
Description |
Equations |
Interaction parameter a for multicomponent mixtures |
amix=∑∑yiyjaij |
Like attractions |
aii=ai |
Unlike attractions |
aij=aiiajj(1−kij) |
Volume parameter a for multicomponent mixtures |
bmix=∑yibi |
Description |
Equations |
Volume change of mixing |
Δvmix=0 |
Enthalpy change of mixing |
Δhmix=0 |
Entropy change of mixing |
Δsmix=−R∑yilnyi>0 |
Gibbs energy change of mixing |
Δgmix=RT∑yilnyi<0 |
Description |
Equations |
Reference state of fugacity in ideal solution |
f^i∘=xifi∘ |
Lewis/Randall rule reference state of fugacity ★ Solvent, pure limit ★ Same species (a-a) interaction only |
fi∘=fif^i∘=xifi |
Henry’s law reference state of fugacity ★ Solute, dilute limit ★ Different species (a-b) interaction only |
fi∘=Hif^i∘=xiHi |
Lewis/Randall rule
Description |
Equations |
Lewis/Randall rule reference state of fugacity ★ Solvent, pure limit ★ Same species (a-a) interaction only |
fi∘=fif^i∘=xifi |
Pure liquid fugacity with Poynting correction at T, P |
fil=φisatPisatexp[∫PisatPRTvildP] |
Pure liquid fugacity with Poynting correction at T, P ★ Incompressible liquid |
fil=φisatPisatexp[RTvil(P−Pisat)] |
Pure liquid fugacity ★ P≈Psat |
fil=φisatPisat |
Pure liquid fugacity ★ Ideal gas (low P, low sat P) |
fil=Pisat |
Description |
Equations |
Henry’s law reference state of fugacity ★ Solute, dilute limit ★ Different species (a-b) interaction only |
fi∘=Hif^i∘=xiHi |
Pressure dependence of Henry’s constant |
Hi(P)=Hi(P1)exp[∫P0PRTVi∞dP] |
Temperature dependence of Henry’s constant |
Hi(T)=Hi(T1)exp[∫T0TRT2hiv−Hi∞dP] |
Description |
Equations |
Activity coefficient |
γi=f^i∘f^il=xifi∘f^il |
Activity coefficient in Lewis/Randall rule reference state |
xi→0limγiLR=fiHixi→1limγiLR=1 |
Activity coefficient in Henry’s law reference state |
xi→0limγiH=1xi→1limγiH=Hifi |
Activity |
ai=fi∘f^ilai=xiγi |
Gibbs-Duhem Equation ★ Constant T, P |
∑xid(lnγi)=0 |
Corollary of Gibbs-Duhem equation ★ Binary mixture |
x1(∂x1∂lnγ1)T,P+x2(∂x2∂lnγ2)T,P=0 |
Description |
Equations |
Excess property |
kE=kreal−kideal |
Excess property |
kE=Δkmixreal−Δkmixideal |
Partial molar excess property |
KiE=Kireal−Kiideal |
Excess Gibbs free energy |
gE=Δgmix−RT∑xilnxi |
Excess Gibbs free energy |
gE=RT∑xilnγi |
Partial molar excess Gibbs free energy |
GiE=RTlnγi |
Area test for thermodynamic consistency ★ Lewis/Randall reference state ★ Constant T, P |
∫01ln(γbγa)dxa=0 |
Description |
Equations |
Two-suffix Margules equation |
gE=Axaxb |
Activity coefficient |
GiE=RTlnγiGaE=Axb2GbE=Axa2 |
Description |
Equations |
Three-suffix Margules equation |
gE=xaxb[A+B(xa−xb)] |
Activity coefficient |
GiE=RTlnγiGaE=(A+3B)xb2−4Bxb3GbE=(A−3B)xa2+4Bxa3 |
Three-suffix Margules equation |
gE=xaxb(Abaxa+Aabxb) |
Activity coefficient |
GiE=RTlnγiGaE=xb2[Aab+2(Aba−Aab)xa]GbE=xa2[Aba+2(Aab−Aba)xb] |
Description |
Equations |
van Laar equation |
gE=xaxb(Axa+BxbAB) |
Activity coefficient |
GiE=RTlnγiGaE=A(Axa+BxbBxb)2GbE=B(Axa+BxbAxa)2 |
Description |
Equations |
Wilson equation |
gE=−RT[xaln(xa+Λabxb)+xbln(xb+Λbaxa)] |
Activity coefficient |
GiEGaEGbE=RTlnγi=−RT[ln(xa+Λabxb)+xb(xb+ΛbaxaΛba−xa+ΛabxbΛab)]=−RT[ln(xb+Λbaxa)+xa(xa+ΛabxbΛab−xb+ΛbaxaΛba)] |
Wilson parameters |
Λab=vavbexp(−RTλab)Λba=vbvaexp(−RTλba) |
Non-random two-liquid model (NRTL)
Description |
Equations |
Non-random two-liquid model (NRTL) |
gE=RTxaxb[xa+xbGbaτbaGba+xb+xaGabτabGab] |
Activity coefficient |
GiE=RTlnγiGaE=RTxb2[(xa+xbGba)2τbaGba2+(xb+xaGab)2τabGab]GbE=RTxa2[(xa+xbGba)2τbaGba+(xa+xbGab)2τabGab2] |
NRTL parameters |
Gab=exp(−ατab)Gba=exp(−ατba) |
Description |
Equations |
Two-suffix Margules equation (ternary system) |
gE=Aabxaxb+Aacxaxc+Abcxbxc |
Partial excess Gibbs energy of species a |
GaE=Aabxb2+Aacxc2+(Aab+Aac−Abc)xbxc |
Partial excess Gibbs energy of species b |
GbE=Aabxa2+Abcxc2+(Aab+Abc−Aac)xaxc |
Partial excess Gibbs energy of species c |
GcE=Aacxa2+Abcxb2+(Aac+Abc−Aab)xaxb |
Two-suffix Margules equation (multicomponent system) |
gE=i∑j∑2Aijxixj |
Two-suffix Margules parameter |
Aii=0Aij=Aji |
Description |
Equations |
Wilson equation |
lnγi=1−ln(j=1∑mxjΛij)−k=1∑mln(j=1∑mxjΛkj)xkΛki |
Wilson parameter |
Λjj=1 |
Non-random two-liquid model (NRTL)
Description |
Equations |
Non-random two-liquid model (NRTL) |
lnγi=l=1∑mxlGlij=1∑mτjixjGji+j=1∑ml=1∑mxlGljxjGij⎝⎜⎜⎜⎛τij−l=1∑mxlGljk=1∑mτkjxkGkj⎠⎟⎟⎟⎞ |
NRTL parameters |
lnGij=−αijτijτij=0Gij=1 |
Description |
Equations |
Universal quasi-chemical theory (UNIQUAC) |
lnγi=lnxiΦi∗+2zqilnΦi∗θi+li+xiΦi∗j=1∑mxjlj+qi′⎣⎢⎢⎢⎡1−j=1∑mθj′τji−j=1∑mk=1∑mθk′τkjθj′τij⎦⎥⎥⎥⎤ |
UNIQUAC parameters |
li=2z(ri−qi)−(ri−1)τjk=exp(−Tajk)τkk=1Φi∗=j=1∑mxjrjxiriθi=j=1∑mxjqjxiqiθi′=j=1∑mxjqj′xiqi′ |
T and P dependence of gE
Description |
Equations |
Excess Gibbs energy dependence on pressure |
(∂P∂gE)T,ni=vE=Δvmix |
Excess Gibbs energy dependence on temperature |
[∂T∂(TgE)]P,ni=−T2hE=−T2Δhmix |
Excess Gibbs energy dependence on temperature ★ Regular solution |
gE=RT∑xilnγi=constant |
Excess Gibbs energy dependence on temperature ★ Athermal solution |
TgE=R∑xilnγi=constant |
T and P dependence of γi
Description |
Equations |
Activity coefficient dependence on pressure |
(∂P∂lnγi)T,x=RTVi−vi |
Activity coefficient dependence on temperature |
(∂T∂lnγi)P,x=−RT2Hi−hi |
Description |
Equations |
Activity coefficient of pure solids |
Γi=1 |
Fugacity of pure solids |
f^is=fis |
Fugacity of solid solutions ★ Treat like liquid solution |
f^is=XiΓifis |
Description |
Equations |
General VLE condition |
f^ivyiφ^ivP=f^il=xiγilfi∘ |
Description |
Equations |
Raoult’s law ★ Ideal gas φ^iv=1 ★ Ideal solution γil=1 ★ Lewis/Randall ref state fi∘=fi=Pisat |
yiP=xiPisat |
K-value |
Ki=PPisat |
Partial pressure relation of binary system |
P=yaP+ybP=xaPasat+(1−xa)Pbsat |
Vapor phase composition of binary system |
ya=xaPasat+(1−xa)PbsatxaPasat |
Partial pressure relation of multicomponent system |
P=∑yiP=∑xiPisat |
Vapor phase composition of multicomponent system |
yi=∑xiPisatxiPisat |
Description |
Equations |
Nonideal liquid solution ★ Ideal gas φ^iv=1 ★ Lewis/Randall ref state fi∘=fi=Pisat |
yiP=xiγiPisat |
Partial pressure relation of binary system |
P=yaP+ybP=xaγaPasat+(1−xa)γbPbsat |
Vapor phase composition of binary system |
ya=xaγaPasat+(1−xa)γbPbsatxaγaPasat |
Partial pressure relation of multicomponent system |
P=∑yiP=∑xiγiPisat |
Vapor phase composition of multicomponent system |
yi=∑xiγiPisatxiγiPisat |
Description |
Equations |
Azeotrope |
xi=yi |
Azeotrope equilibrium consition |
P=γiPisat |
Activity coefficient from azeotrope |
γi=PisatP |
Activity coefficient ratio from azeotrope |
γbγa=PasatPbsat |
Description |
Equations |
Least square objective function based on pressure |
fP=∑(P−Pcalc)i2 |
Least square objective function based on excess Gibbs energy |
fgE=∑(gE−gcalcE)i2 |
Least square objective function based on activity coefficient for binary system |
fγ=∑[(γaγa−γacalc)2−(γbγb−γbcalc)2]i |
|
|
Ideal gas |
Nonideal gas |
Ideal liquid |
Solute a |
yaP=xaHa |
yaφaP=xaHaexp[∫P0PRTVa∞dP] |
|
Solvent b |
ybP=xbPbsat |
ybφ^bP=xbφbsatPbsatexp[∫PbsatPRTvbldP] |
Nonideal liquid |
Solute a |
yaP=xaγaHHa |
yaφaP=xaγaHHaexp[∫P0PRTVa∞dP] |
|
Solvent b |
ybP=xbγbPbsat |
ybφ^bP=xbγbφbsatPbsatexp[∫PbsatPRTvbldP] |
Description |
Equations |
Mixing rule for Henry’s constant |
lnHa=j∑xilnHa,j |
Description |
Equations |
General LLE condition |
f^iαxiαγiα=f^iβ=xiβγiβ |
Compositions xaα,xbα,xaβ,xbβ ★ Two-suffix Margules equation |
xaαexp[RTA(xbα)2]xbαexp[RTA(xaα)2]xaα+xbαxaβ+xbβ=xaβexp[RTA(xbβ)2]=xbβexp[RTA(xaβ)2]=1=1 |
Genral criteria for instability (separation) |
(∂xa2∂g2)T,P<0 |
Criteria for instability (separation) ★ Two-suffix Margules equation |
xaxbRT<2A |
Upper consolute temperature ★ Two-suffix Margules equation |
Tu=2RA |
Description |
Equations |
General VLLE condition |
f^iv=f^iα=f^iβ |
Composition and state variables xaα,xbα,xaβ,xbβ,ya,yb,T,P ★ Two-suffix Margules equation |
yaP=xaαexp[RTA(xbα)2]PasatybP=xbαexp[RTA(xaα)2]Pbsatya+ybxaα+xbαxaβ+xbβ=xaβexp[RTA(xbβ)2]Pasat=xbβexp[RTA(xaβ)2]Pbsat=1=1=1 |
Description |
Equations |
General SLE condition |
f^isXiΓifisfs=f^il=xiγifil=xiγifil |
Composition of SLE ★ Pure solid |
ln[xiγi]=RΔhfus,Tm[T1−Tm1]−R1∫TmTTΔcPsldT+RT1∫TmTΔcPsldT |
Composition of SLE ★ Pure solid. ★ Constant ΔcPsl |
ln[xiγi]=RΔhfus,Tm[T1−Tm1]−RΔcPsl[1−TTm−ln(TmT)] |
Composition of SLE ★ Solid solution |
ln[XiΓixiγi]=RΔhfus,Tm[T1−Tm1]−R1∫TmTTΔcPsldT+RT1∫TmTΔcPsldT |
Composition of SLE ★ Solid solution. ★ Constant ΔcPsl |
ln[XiΓixiγi]=RΔhfus,Tm[T1−Tm1]−RΔcPsl[1−TTm−ln(TmT)] |
Description |
Equations |
Boiling point elevation ★ Solvent a, solute b |
T−Tboil=ΔhvapRTboil2γaxb |
Activity coefficient from boiling point elevation data |
γb=RTboil2xb(T−Tboil)Δhvap |
Freezing point depression ★ Solvent a, solute b |
T−Tm=ΔhfusRTm2γaxb |
Activity coefficient from freezing point depression data |
γb=RTm2xb(T−Tm)Δhfus |
Osmotic pressure |
Π=−vaRTln(xaγa) |
Osmotic pressure ★ Ideal solution, dilute b |
Π=−vaRTxb |
Molar mass from osmotic pressure data |
Mb=ΠRTCb |
Description |
Equations |
Chemical reaction expressed in stoichiometric coefficients |
∑νiAi |
Extent of reaction |
dξ=νidni |
Moles of species |
ni=ni∘+νiξ |
Chemical equilibrium condition |
dξdG=0=∑μiνi |
Gibbs energy of reaction |
Δgrxn∘=∑νigi∘ |
Equilibrium constant |
K=∏(fi∘f^i)νi |
Equilibrium constant and Gibbs energy of reaction |
lnK=−RTΔgrxn∘ |
Description |
Equations |
Gibbs energy of formation method |
Δgrxn∘=∑νiΔgf,i∘ |
T dependence of K |
dTdlnK=RT2Δhrxn∘ |
T dependence of K ★ Constant Δhrxn∘ |
ln(K2K1)=−RΔhrxn∘(T21−T11) |
T dependence of K ★ Δhrxn∘(T) |
ln(K2K1)=−RΔhrxn∘(T21−T11)+∫T1T2RT2∫T1T∑νicP,idTdT |
Description |
Equations |
General expression |
K=∏(fi∘yiφ^iP)νi |
Lewis fugacity rule |
K=Pν∏(yiφi)νi |
Ideal gas |
K=Pν∏(yi)νi |
Description |
Equations |
General expression |
K=∏(fi∘xiγifi)νi |
Low pressure, neglegible pressure dependence |
K=Pν∏(xiγi)νi |
Ideal solution |
K=Pν∏(xi)νi |
Description |
Equations |
General expression |
K=∏(fi∘XiΓifi)νi |
Low pressure, neglegible pressure dependence |
K=Pν∏(XiΓi)νi |
Ideal solid solution |
K=Pν∏(Xi)νi |
Description |
Equations |
Chemical reactions expressed in stoichiometric coefficients |
k=1∑Ri=1∑mνk,iAi |
Moles of species |
ni=ni∘+∑k=1Rνk,iξ |
Description |
Equations |
Gibbs energy and non-Pv work |
δW∗≥(dG)T,P |
Gibbs energy of reaction and reversible work |
W=ΔG=zξFE |
Nerst equation |
E=Erxn∘−zFRTln[vap∏(Pi)νiliq∏(biγi)νi] |
Standard Gibbs energy of reaction |
Δgrxn∘=−zFErxn∘ |
Standard potential of reaction |
Erxn∘=−zFΔgrxn∘ |
Standard potential of reaction |
Erxn∘=Ered∘(cathode)−Ered∘(anode) |
Average activity coefficient |
XXa YXbaXX(z+)++bYX(z−)−γ±=(γ+aγ−b)1/(a+b) |
Average activity coefficient |
XYXX++YX−γ±=γ+γ− |
Debye-Huckel model |
lnγ±=−A∣z+z−∣I |
Ionic strength |
I=21∑zi2bi |