CHEM 455 Physical Chemistry

Contents
Description Equations
Energy quantization E=nhνE = nh\nu
Average energy of an oscillating dipole Eosc=hνehν/kBT1\langle E_{\text{osc}} \rangle = \dfrac{h\nu}{e^{h\nu / k_B T} - 1}
Spectral radiation density of blackbody (Planck) ρ(ν,T) dν=8πhν3c31ehν/kBT1 dν\rho (\nu, T) \ d\nu = \dfrac{8\pi h \nu^3}{c^3}\dfrac{1}{e^{h\nu / k_B T} - 1} \ d\nu
Spectral radiation density of blackbody (classical) ρ(ν,T) dν=8πhν3c3kBTdν\rho (\nu, T) \ d\nu = \dfrac{8\pi h \nu^3}{c^3} k_B T d\nu
Description Equations
Energy of light E=hνE = h \nu
Photoelectric effect
Kinetic energy of ejected photoelectron
Ek=hνΦE_k = h \nu - \Phi
de Broglie relation p=hλp = \dfrac{h}{\lambda}
Kinetic energy Ek=12mv2=p22mE_k = \dfrac{1}{2}mv^2 = \dfrac{p^2}{2m}
Description Equations
Hydrogen emission lines
n2>n1n_2 > n_1
ν~=1λ=RH(1n121n22)\tilde{\nu} = \dfrac{1}{\lambda} = R_H \left( \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right)
Bohr’s radius r=4πε02mee2r = \dfrac{4\pi \varepsilon_0 \hbar^2}{m_e e^2}
Energy level in Bohr’s model En=mee48ε02h2n2E_n = -\dfrac{m_e e^4}{8\varepsilon_0^2 h^2n^2}
Emission of hydrogen atom
n2>n1n_2 > n_1
ν=mee48ε02h3(1n121n22)\nu = \dfrac{m_e e^4}{8\varepsilon_0^2 h^3} \left( \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right)
Description Equations
Classical nondispersive wave equation Ψ(x,t)x2=1v2Ψ(x,t)t2\dfrac{\partial \Psi(x, t)}{\partial x^2} = \dfrac{1}{v^2} \dfrac{\partial \Psi(x, t)}{\partial t^2}
Wave number k=2πλk = \dfrac{2\pi}{\lambda}
Frequency ν=1T\nu = \dfrac{1}{T}
Angular frequency ω=2πT=2πν\omega = \dfrac{2\pi}{T} = 2\pi\nu
Wave speed v=λνv = \lambda\nu
Euler’s formula eiθ=cosθ+isinθe^{i\theta} = \cos\theta + i\sin\theta
Solution of wave equation Ψ(x,t)=Asin(kxωt+ϕ)=Re(Aei(kxωt+ϕ))\begin{aligned}\Psi(x, t) &= A \sin(kx - \omega t + \phi) \\ &= \mathrm{Re}(Ae^{i(kx-\omega t + \phi')})\end{aligned}
Interfering traveling waves give standing wave Ψ(x,t)=A[sin(kxωt)+sin(kx+ωt)]=2Asin(kx)cos(ωt)=ψ(x)cos(ωt)\begin{aligned}\Psi(x, t) &= A[\sin(kx - \omega t) + \sin(kx + \omega t)] \\ &= 2A \sin(kx)\cos(\omega t) \\ &= \psi(x)\cos(\omega t) \end{aligned}
Time-independent Schrodinger equation 22md2ψ(x)dx2+V(x)ψ(x)=Eψ(x)-\dfrac{\hbar^2}{2m}\dfrac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)
Time-dependent Schrodinger equation 22m2Ψ(x,t)x2+V(x,t)Ψ(x,t)=iΨ(x,t)-\dfrac{\hbar^2}{2m}\dfrac{\partial^2\Psi(x, t)}{\partial x^2} + V(x, t)\Psi(x, t) = i\hbar\Psi(x, t)
Stationary states are standing waves Ψ(x,t)=ψ(x)ei(E/)t\Psi(x, t) = \psi(x) e^{-i(E/\hbar)t}
Normalization f(x)=Dff dx=1\Vert f(x) \Vert = \int_D f^* f \ dx = 1
Orthogonality Dfg dx=0\int_D f^* g \ dx = 0
Use quantum mechanics when … 1. λparticleLproblem\lambda_{\text{particle}} \sim L_{\text{problem}}
2. ΔEkbT\Delta E \gtrsim k_bT (discrete energy spectrum)
  1. The state of a quantum-mechanical particle is completely specified by a wave function Ψ(x,t)\Psi(x, t). The probability that the particle will be found at time t0t_0 in a spatial interval of width dxdx centered at x0x_0 is given by Ψ(x0,t0)Ψ(x0,t0)dx\Psi^*(x_0, t_0)\Psi(x_0, t_0) dx
  2. For every measurable property of a system, there exists a corresponding operator.
  3. In any single measurement of the observable that corresponds to the operator A^\hat{A}, the only values that will ever be measured are the eigenvalues of that operator.
  4. If the system is in a state described by the wave function Ψ(x,t)\Psi(x, t), and the value of the observatle aa is measured once on each of many identically prepared systems, the average value (expectation value) of all of the measurements is given by a=ΨA^Ψ dxΨΨ dx \langle a \rangle = \dfrac{\displaystyle\int_{-\infty}^{\infty} \Psi^* \hat{A} \Psi \ dx}{\displaystyle\int_{-\infty}^{\infty} \Psi^*\Psi \ dx}
  5. The evolution in time of a quantum-mechanical system is governed by the time-dependent Schrödinger equation H^Ψ(x,t)=iΨ(x,t)t \hat{H}\Psi(x, t) = i\hbar\dfrac{\partial\Psi(x, t)}{\partial t}
Description 1D 3D
Position x^=x\hat{x} = x x^=x\mathbf{\hat{x}} = \mathbf{x}
Linear momentum p^x=iddx\hat{p}_x = -i\hbar \dfrac{d}{dx} p^=i\mathbf{\hat{p}} = -i\hbar\mathbf{\nabla}
Kinetic energy T^=p^x22m=22md2dx2\hat{T} = \dfrac{\hat{p}_x^2}{2m} = -\dfrac{\hbar^2}{2m}\dfrac{d^2}{dx^2} T^=22m2\mathbf{\hat{T}} = -\dfrac{\hbar^2}{2m}\mathbf{\nabla}^2
Potential energy V^=V(x)\hat{V} = V(x) V^=V(x)\mathbf{\hat{V}} = V(\mathbf{x})
Total energy Hamiltonian H^=T^+V^=22md2dx2+V(x)\hat{H} = \hat{T} + \hat{V} = -\dfrac{\hbar^2}{2m}\dfrac{d^2}{dx^2} + V(x) H^=22m2+V(x)\mathbf{\hat{H}} = -\dfrac{\hbar^2}{2m}\mathbf{\nabla}^2 + V(\mathbf{x})
Description Equations
Time dependent Schrodinger equation H^Ψ(x,t)=iΨ(x,t)t\hat{H}\Psi(x, t) = i\hbar\dfrac{\partial\Psi(x, t)}{\partial t}
Time independent Schrodinger equation H^ψn(x)=Enψn(x)\hat{H}\psi_n(x) = E_n \psi_n(x)
Stationary state wave function Ψ(x,t)=ψ(x)T(t)\Psi(x, t) = \psi(x) T(t)
Time component of wave function T(t)=eiEt/T(t) = e^{iEt/\hbar}
Probability of finding particle in an interval Prob(x,x+dx)=Ψ(x,t)2dx=ψ(x)2dx\mathrm{Prob}(x, x+dx) = \vert \Psi(x, t) \vert^2 dx = \vert \psi(x) \vert^2 dx
General solution as linear combination of stationary states ψ(x)=ncnϕn(x)\psi(x) = \sum\limits_n c_n \phi_n(x)
Expansion coefficients cn=ϕnψ=ϕnψ dxc_n = \langle \phi_n \vert \psi \rangle = \int \phi_n^* \psi \ dx
Normalization ncn=1\sum\limits_n c_n = 1
Description Equations
Time independent Schrodinger equation [22md2dx2+V(x)]ψ(x)=Eψ(x)\left[ -\dfrac{\hbar^2}{2m}\dfrac{d^2}{dx^2} + V(x) \right] \psi(x) = E\psi(x)
Wave function
n=0,1,2,n = 0, 1, 2, …
ψn(x)=2Lsin(nπxL)\psi_n(x) = \sqrt{\dfrac{2}{L}} \sin\left(\dfrac{n \pi x}{L}\right)
Energy eigenvalues En=h28mL2n2=2π22mL2n2E_n = \dfrac{h^2}{8mL^2} n^2 = \dfrac{\hbar^2 \pi^2}{2mL^2}n^2
Description Equations
Time independent Schrodinger equation [22m2+V(x)]ψ(x)=Eψ(x)\left[ -\dfrac{\hbar^2}{2m}\mathbf{\nabla}^2 + V(\mathbf{x}) \right] \psi(\mathbf{x}) = E\psi(\mathbf{x})
Wave function
nx=0,1,2,n_x = 0, 1, 2, …
ny=0,1,2,n_y = 0, 1, 2, …
nz=0,1,2,n_z = 0, 1, 2, …
ψnx,ny,nz(x)=ψnx(x)ψny(y)ψnz(z)=2Lx2Ly2Lzsin(nxπxLx)sin(nyπyLy)sin(nzπzLz)\begin{aligned}&\psi_{n_x, n_y, n_z}(\mathbf{x}) \\ =& \psi_{n_x}(x)\psi_{n_y}(y)\psi_{n_z}(z) \\ =& \sqrt{\dfrac{2}{L_x}}\sqrt{\dfrac{2}{L_y}}\sqrt{\dfrac{2}{L_z}} \sin\left(\dfrac{n_x \pi x}{L_x}\right)\sin\left(\dfrac{n_y \pi y}{L_y}\right)\sin\left(\dfrac{n_z \pi z}{L_z}\right)\end{aligned}
Energy eigenvalues En=h28m(nx2Lx2+ny2Ly2+nz2Lz2)E_n = \dfrac{h^2}{8m} \left(\dfrac{n_x^2}{L_x^2} + \dfrac{n_y^2}{L_y^2} + \dfrac{n_z^2}{L_z^2}\right)
Description Equations
Potential V(x)={0x[0,L]V0elsewhereV(x) = \begin{cases}0 & x\in [0, L] \\ V_0 & \mathrm{elsewhere}\end{cases}
Reflection probability R=(EEV0)2(E+EV0)2R = \dfrac{(\sqrt{E} - \sqrt{E - V_0})^2}{(\sqrt{E} + \sqrt{E - V_0})^2}
Transmission probability T=4E(EV0)(EEV0)2T = \dfrac{4\sqrt{E(E - V_0)}}{(\sqrt{E} - \sqrt{E - V_0})^2}
Description Equations
Commutator [A,B]=ABBA[A, B] = AB - BA
Condition of commutation [A,B]=0[A, B] = 0
Standard deviation (uncertainty) σA=(AA2)=A2A2\begin{aligned}\sigma_A &= \sqrt{\langle (A - \langle A \rangle^2 \rangle)} \\ &= \sqrt{\langle A^2 \rangle - \langle A \rangle^2}\end{aligned}
Heisenberg uncertainty principle (general) σAσB12[A^,B^]\sigma_A \sigma_B \ge \frac{1}{2} \vert\langle[\hat{A}, \hat{B}]\rangle\vert
Heisenberg uncertainty principle (position-momentum) σxσp2\sigma_x \sigma_p \ge \frac{\hbar}{2}
Description Equations
Hamiltonian of dimer Hdimer=p122m1+p222m2+V(x1x2)\mathbf{H}_{\text{dimer}} = \dfrac{\mathbf{p}_1^2}{2m_1} + \dfrac{\mathbf{p}_2^2}{2m_2} + V(\vert \mathbf{x}_1 - \mathbf{x}_2\vert)
Total mass M=m1+m2M = m_1 + m_2
Reduced mass μ=m1m2m1+m2\mu = \dfrac{m_1m_2}{m_1 + m_2}
Position in center of mass (COM) coordinate X=m1x1+m2x2M\mathbf{X} = \dfrac{m_1 \mathbf{x}_1 + m_2 \mathbf{x}_2}{M}
Momentum in center of mass (COM) coordinate Π=p1+p2\mathbf{\Pi} = \mathbf{p}_1 + \mathbf{p}_2
Position in relative coordinate x=x1x2r\mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2 \equiv \mathbf{r}
Momentum in relative coordinate p=m1p1+m2p2M\mathbf{p} = \dfrac{m_1 \mathbf{p}_1 + m_2 \mathbf{p}_2}{M}
Hamiltonian of dimer Hdimer=Hfree+Hint=Π22MCOM coord+p22μ+V(x)rel coord\begin{aligned}\mathbf{H}_{\text{dimer}} &= \mathbf{H}_{\text{free}} + \mathbf{H}_{\text{int}} \\ &= \underbrace{\dfrac{\mathbf{\Pi}^2}{2M}}_{\text{COM coord}} + \underbrace{\dfrac{\mathbf{p}^2}{2\mu} + V(\vert\mathbf{x}\vert)}_{\text{rel coord}}\end{aligned}
Free particle Hamiltonian Hfree=Π22M\mathbf{H}_{\text{free}} = \dfrac{\mathbf{\Pi}^2}{2M}
Internal Hamiltonian Hint=p22μ+V(x)\mathbf{H}_{\text{int}} = \dfrac{\mathbf{p}^2}{2\mu} + V(\vert\mathbf{x}\vert)
Dimer wave function Ψdimer=Φ(X)ψ(x)\Psi_{\text{dimer}} = \Phi(\mathbf{X}) \psi(\mathbf{x})
Free particle (COM) wave function Φ(X)=e±iΠX/\Phi(\mathbf{X}) = e^{\pm i\mathbf{\Pi X}/\hbar}
Internal Hamiltonian Schrodinger equation [22μx2+V(r)]ψ(x)=Eψ(x)\left[ -\dfrac{\hbar^2}{2\mu}\nabla_{\mathbf{x}}^2 + V(\mathbf{r}) \right] \psi(\mathbf{x}) = E\psi(\mathbf{x})
Laplacian in spherical coordinate
θ[0,π]\theta \in [0, \pi]
ϕ[0,2π]\phi \in [0, 2\pi]
2=1r2r(r2r)radial breathing KE, vibration+1r2sinθθ(sinθθ)+1r2sin2θ2ϕ2angular breathing KE, rotation\nabla^2 = \underbrace{\dfrac{1}{r^2}\dfrac{\partial}{\partial r}\left(r^2 \dfrac{\partial}{\partial r}\right)}_{\text{radial breathing KE, vibration}} + \underbrace{\dfrac{1}{r^2 \sin\theta}\dfrac{\partial}{\partial \theta}\left(\sin\theta\dfrac{\partial}{\partial \theta}\right) + \dfrac{1}{r^2 \sin^2 \theta}\dfrac{\partial^2}{\partial\phi^2}}_{\text{angular breathing KE, rotation}}
Dimer Hamiltonian H^dimer=H^COM+H^vib+H^rot\hat{H}_{\text{dimer}} = \hat{H}_{\text{COM}} + \hat{H}_{\text{vib}} + \hat{H}_{\text{rot}}
Dimer total energy (see below) E=Π22M+ω0(n+12)+2l(l+1)2IE = \dfrac{\Pi^2}{2M} + \hbar\omega_0 (n+\frac{1}{2}) + \dfrac{\hbar^2 l(l+1)}{2I}
Description Equations
Vibrational Schrodinger equation [22μ1r2r(r2r)+V(r)]ψ(x)=Eψ(x)\left[ -\dfrac{\hbar^2}{2\mu}\dfrac{1}{r^2}\dfrac{\partial}{\partial r}\left(r^2 \dfrac{\partial}{\partial r}\right) + V(r) \right]\psi(\mathbf{x}) = E\psi(\mathbf{x})
Wave function ψ(x)=R(r)Y(θ,ϕ)\psi(\mathbf{x}) = R(r)Y(\theta, \phi)
Harmonic approximation V(r)12kr2V(r) \approx \frac{1}{2}kr^2
Spring constant k=μω02k = \mu\omega_0^2
Vibrational Schrodinger equation [22μ1r2r(r2r)+12kr2]ψ(r)=Eψ(r)\left[ -\dfrac{\hbar^2}{2\mu}\dfrac{1}{r^2}\dfrac{\partial}{\partial r}\left(r^2 \dfrac{\partial}{\partial r}\right) + \dfrac{1}{2}kr^2 \right]\psi(r) = E\psi(r)
Wave function
n=0,1,2,n = 0, 1, 2, …
ψ(r)=122n!(απ)1/4Hn(αr)eαr2/2\psi(r) = \dfrac{1}{\sqrt{2^2 n!}}\left(\dfrac{\alpha}{\pi}\right)^{1/4} H_n(\sqrt{\alpha} r) e^{-\alpha r^2 / 2}
Hermite polynomials Hn(r)=()nex2(dndxn)ex2H_n(r) = (-)^n e^{x^2}\left(\dfrac{d^n}{dx^n}\right)e^{-x^2}
Constant α=mω0\alpha = \dfrac{m\omega_0}{\hbar}
Energy eigenvalue
n=0,1,2,n = 0, 1, 2, …
En=(n+12)ω0E_n = (n + \frac{1}{2})\hbar \omega_0
Transition dipole moment μfi=dμ(x0)dxψfx^ψi\vec{\mu}_{fi} = \dfrac{d\vec{\mu}(x_0)}{dx} \langle \psi_f \vert \hat{x} \vert \psi_i \rangle
Vibrational selection rule Δn=±1\Delta n = \pm 1
Description Equations
Angular momentum L=x×p=Iω\mathbf{L} = \mathbf{x} \times \mathbf{p} = I\vec{\omega}
Linear velocity v=R0ω\vec{v} = R_0 \vec{\omega}
Moment of inertia I=mR02I = mR_0^2
Rotational kinetic energy E=12Iω2=L22IE = \dfrac{1}{2}I\omega^2 = \dfrac{L^2}{2I}
Description Equations
Angular momentum operator L^=x^×p^\hat{\mathbf{L}} = \hat{\mathbf{x}} \times \hat{\mathbf{p}}
z-component of angular momentum operator Lx=iϕL_x = \dfrac{\hbar}{i}\dfrac{\partial}{\partial\phi}
Magnitude of angular momentum operator L^2=L2=2[1sinθθ(sinθθ+1sin2θ2ϕ2)]\hat{\mathbf{L}}^2 = L^2 = -\hbar^2 \left[ \dfrac{1}{\sin\theta}\dfrac{\partial}{\partial\theta} \left( \sin\theta\dfrac{\partial}{\partial\theta} + \dfrac{1}{\sin^2\theta}\dfrac{\partial^2}{\partial\phi^2} \right) \right]
Components of L^\hat{\mathbf{L}} does not commute [L^i,L^j]=iL^k[\hat{L}_i, \hat{L}_j] = i\hbar \hat{L}_k
Components of L^\hat{\mathbf{L}} commute with its magnitude [L^i,L2]=0[\hat{L}_i, L^2] = 0
Description Equations
Rotational Schrodinger equation 22μR02[1r2sinθθ(sinθθ)+1r2sin2θ2ϕ2]Y(θ,ϕ)=EY(θ,ϕ)-\dfrac{\hbar^2}{2\mu R_0^2}\left[ \dfrac{1}{r^2 \sin\theta}\dfrac{\partial}{\partial \theta}\left(\sin\theta\dfrac{\partial}{\partial \theta}\right) + \dfrac{1}{r^2 \sin^2 \theta}\dfrac{\partial^2}{\partial\phi^2} \right]Y(\theta, \phi) = EY(\theta, \phi)
Spherical harmonics Ylm(θ,ϕ)=()m(2l+1)4π(lm)!(l+m)!Plm(cosθ)eimϕY_l^m(\theta, \phi) = (-)^m \sqrt{\dfrac{(2l+1)}{4\pi}\dfrac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi}
Legendre polynomial Plm(x)=12ll!(1x2)m/2d(l+m)dx(l+m)(x21)lP_l^m(x) = \dfrac{1}{2^l l!}(1-x^2)^{m/2} \dfrac{d^{(l+m)}}{dx^{(l+m)}}(x^2-1)^l
Energy eigenvalues
l=0,1,2,l = 0, 1, 2, …
El=22Il(l+1)E_l = \dfrac{\hbar^2}{2I}l(l+1)
Angular momentum eigenvalues
l=0,1,2,l = 0, 1, 2, …
L2Y=2l(l+1)YL^2 Y = \hbar^2l(l+1) Y
z-component eigenvalues
m=l,,0,,lm = -l, …, 0, …, l
LzY=mYL_z Y = \hbar m Y
Transition dipole moment μfi=ψfμzcosθψi\mu_{fi} = \langle \psi_f \vert \mu_z \cos\theta \vert \psi_i \rangle
Rotational selection rule Δl=±1,Δm=0\Delta l = \pm 1, \Delta m = 0
Description Equations
Hydrogen atom Schrodinger equation [2me1r2r(r2r)+L2mer2e2r]ψ(x)=Eψ(x)\left[ -\dfrac{\hbar}{2m_e}\dfrac{1}{r^2}\dfrac{\partial}{\partial r}\left(r^2 \dfrac{\partial}{\partial r}\right) + \dfrac{\vec{L}}{2m_er^2} - \dfrac{e^2}{r} \right]\psi(x) = E\psi(x)
Effective potential Veff=l(l+1)2mr2e2rV_{\text{eff}} = \dfrac{\hbar l(l+1)}{2mr^2} - \dfrac{e^2}{r}
Wave function
n=1,2,n = 1, 2, …
ψnlm(x)=Rnl(r)Ylm(θ,ϕ)\psi_{nlm}(x) = R_{nl}(r)Y_l^m(\theta, \phi)
Energy eigenvalues
n=1,2,n = 1, 2, …
En=e22a01n2=me4221n2RHn2E_n = -\dfrac{e^2}{2a_0}\dfrac{1}{n^2} = -\dfrac{me^4}{2\hbar^2}\dfrac{1}{n^2} - \dfrac{R_H}{n^2}
Rydberg’s constant RH=2.179×1018J=13.6 eVR_H = 2.179 \times 10^{-18} \mathrm{J} = 13.6 \ \mathrm{eV}
Bohr’s radius a0=2me2a_0 = \dfrac{\hbar^2}{me^2}
Radial probability distribution Pnl(r)dr=r2Rnl2(r)drP_{nl}(r) dr = r^2 R^2_{nl}(r) dr
Description Equations
Helium Schrodinger equation [22m12KE of e122m22KE of e22e2x1e1-N attraction2e2x2e2-N attraction+e2x1x2e1-e2repulsion]ψ(x1,x2)=Eψ(x1,x2)\left[ \underbrace{-\dfrac{\hbar^2}{2m}\nabla_1^2}_{\text{KE of }e^-_1} \overbrace{-\dfrac{\hbar^2}{2m}\nabla_2^2}^{\text{KE of }e^-_2} \underbrace{-\dfrac{2e^2}{\vert\mathbf{x}_1\vert}}_{e^-_1\text{-N attraction}} \overbrace{-\dfrac{2e^2}{\vert\mathbf{x}_2\vert}}^{e^-_2\text{-N attraction}} + \underbrace{\dfrac{e^2}{\vert\mathbf{x}_1 - \mathbf{x}_2\vert}}_{e^-_1 \text{-} e^-_2 \text{repulsion}} \right] \psi(\mathbf{x}_1, \mathbf{x}_2) = E \psi(\mathbf{x}_1, \mathbf{x}_2)
Orbital approximation ψ(x1,x2,,xn)=ϕ(x1)ϕ(x2)ϕ(xn)\psi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = \phi(\mathbf{x}_1)\phi(\mathbf{x}_2)\dots\phi(\mathbf{x}_n)
Hartree orbital equations [2i22mZe2x+j=1,jiNe2ϕj(x)ϕj(x)xxd3x]ϕi(x)=εiiϕi(x)\left[ -\dfrac{\hbar^2 \nabla_i^2}{2m} - \dfrac{Ze^2}{\vert\mathbf{x}\vert} + \sum\limits^N_{j=1, j\not= i} \displaystyle\int \dfrac{e^2 \phi_j^*(\mathbf{x}')\phi_j(\mathbf{x}')}{\vert\mathbf{x} - \mathbf{x}' \vert} d^3\mathbf{x}' \right] \phi_i(\mathbf{x}) = \varepsilon_{ii} \phi_i(\mathbf{x})
Description Equations
Components of S^\hat{\mathbf{S}} does not commute [S^i,S^j]=iS^k[\hat{S}_i, \hat{S}_j] = i\hbar \hat{S}_k
Components of S^\hat{\mathbf{S}} commute with its magnitude [S^i,S2]=0[\hat{S}_i, S^2] = 0
Eigenvalue of S^2\hat{\mathbf{S}}^2 S^22s(s+1)\hat{\mathbf{S}}^2 \leftrightarrow \hbar^2 s(s+1)
Eigenvalue of S^z\hat{S}_z S^zms\hat{S}_z \leftrightarrow \hbar m_s
Description Equations
Electron spin s=12s = \frac{1}{2}
Spin up function α(ms)={1ms=+120ms=12\alpha(m_s) = \begin{cases} 1 & m_s = +\frac{1}{2} \\ 0 & m_s = -\frac{1}{2} \end{cases}
Spin down function β(ms)={0ms=+121ms=12\beta(m_s) = \begin{cases} 0 & m_s = +\frac{1}{2} \\ 1 & m_s = -\frac{1}{2} \end{cases}
α\alpha is eigenfunction of Sz^\hat{S_z} Sz^α=+12α\hat{S_z} \alpha = +\frac{1}{2}\hbar \alpha
β\beta is eigenfunction of Sz^\hat{S_z} Sz^β=12β\hat{S_z} \beta = -\frac{1}{2}\hbar \beta
α,β\alpha, \beta are eigenfunctions of S2^\hat{S^2} S2^α=2s(s+1)α=342αS2^β=2s(s+1)β=342β\hat{S^2} \alpha = \hbar^2 s(s+1) \alpha = \frac{3}{4} \hbar^2 \alpha \newline \hat{S^2} \beta = \hbar^2 s(s+1) \beta = \frac{3}{4} \hbar^2 \beta
Normalization msαα=msββ=1\sum\limits_{m_s} \alpha^*\alpha = \sum\limits_{m_s} \beta^*\beta = 1
Orthogonality msαβ=msβα=0\sum\limits_{m_s} \alpha^*\beta = \sum\limits_{m_s} \beta^*\alpha = 0
Description Equations
Spin-spin permutation operator Pijψ(r1,r2,,ri,,rj,,rN)=ψ(r1,r2,,rj,,ri,,rN)P_{ij} \psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_i, \dots, \mathbf{r}_j, \dots, \mathbf{r}_N) = \psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_j, \dots, \mathbf{r}_i, \dots, \mathbf{r}_N)
Doing nothing PijPij=1P_{ij}P_{ij} = 1
Symmetric eigenvalue λ=1\lambda = 1
Anti-symmetric eigenvalue λ=1\lambda = -1
Fermions (e.g. electron) 12\frac{1}{2}-integer spin, anti-symmetric
Bosons integer spin, symmetric
Pauli exclusion principle ψ(r1,r2,,ri,,ri,,rN)=ψ(r1,r2,,ri,,ri,,rN)=0\psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_i, \dots, \mathbf{r}_i, \dots, \mathbf{r}_N) = - \psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_i, \dots, \mathbf{r}_i, \dots, \mathbf{r}_N) = 0
Slater determinant Ψ(x1,x2,,xN)=1N!χ1(x1)χ2(x1)χN(x1)χ1(x2)χ2(x2)χN(x2)χ1(xN)χ2(xN)χN(xN)\Psi(\mathrm{x}_1, \mathrm{x}_2, \cdots, \mathrm{x}_N) = \dfrac{1}{\sqrt{N!}} \begin{vmatrix}\chi_1(\mathbf{x}_1) & \chi_2(\mathbf{x}_1) & \cdots & \chi_N(\mathbf{x}_1) \\ \chi_1(\mathbf{x}_2) & \chi_2(\mathbf{x}_2) & \cdots & \chi_N(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_1(\mathbf{x}_N) & \chi_2(\mathbf{x}_N) & \cdots & \chi_N(\mathbf{x}_N) \end{vmatrix}
Hartree-Fock orbital equations [222mZe2x]ϕi(r)+j=1N[ϕi(r)e2ϕj(r)ϕj(r)xxd3rϕj(r)e2ϕj(r)ϕi(r)xxd3r]=εiϕi(r)\left[ -\dfrac{\hbar^2\nabla^2}{2m} - \dfrac{Ze^2}{\vert\mathbf{x}\vert} \right] \phi_i(\mathbf{r}) + \displaystyle\sum_{j=1}^N \left[ \phi_i(\mathbf{r}) \int \dfrac{e^2 \phi^*_j(\mathbf{r}) \phi_j(\mathbf{r})}{\vert\mathbf{x} - \mathbf{x}'\vert} d^3r' - \phi_j(\mathbf{r}) \int \dfrac{e^2 \phi^*_j(\mathbf{r}) \phi_i(\mathbf{r})}{\vert\mathbf{x} - \mathbf{x}'\vert} d^3r' \right] = \varepsilon_i \phi_i(\mathbf{r})
Molecular orbital by linear combination of atomic orbitals (MO-LCAO) ψ(x)=c1ϕ1(x)+c2ϕ2(x)MO=c1(AO)+c2(AO)\psi(\mathbf{x}) = c_1 \phi_1 (\mathbf{x}) + c_2 \phi_2 (\mathbf{x}) \newline \mathrm{MO} = c_1 (\mathrm{AO}) + c_2 (\mathrm{AO})
Variational principle E=ψHψψψE = \dfrac{\langle \psi \vert H \vert \psi \rangle}{\langle \psi \vert \psi \rangle}