Contents

CHEM 155 Honors General Chemistry II

Acid-Base Equilibria

Fundamentals

Description Equations
Autoionization of water $\color{blue} \ce{2H2O <=> H3O+ + OH-}$
$K_{w} = \ce{[H3O+][OH-]} = 10^{-14}$
pH function $\ce{pH} = -\log \ce{[H3O+]}$
Acid dissociation constant $\color{blue} \ce{HA + H2O <=> H3O+ + A-}$
$K_{a} = \dfrac{\ce{[H3O+][A-]}}{\ce{HA}}$
Base dissociation constant $\color{blue} \ce{B + H2O <=> HB+ + OH-}$
$K_{b} = \dfrac{\ce{[HB+][OH-]}}{\ce{[B]}}$
Relationship between dissociation constants $K_{w} = K_{a}K_{b}$
$\ce{p}K_{a} + \ce{p}K_{b} = \ce{p}K_{w} = 14$
Indicators $\color{blue} \ce{HIn + H2O <=> H3O+ + In-}$
$\dfrac{\ce{[H3O+]}}{K_{a}} = \dfrac{\ce{[HIn]}}{\ce{[In^{-}]}}$

Buffer and titration

Description Equations
Henderson–Hasselbalch equation
pH of a buffer
$\ce{pH} = \ce{p}K_{a} + \log{\dfrac{\ce{[A^{-}]_{0}}}{\ce{[HA]_{0}}}}$
Titration curve at half equivalence point $\ce{pH} = \ce{p}K_{a}$ (where $\ce{[HA] = [A-]}$)
Titration curve until equivalence point
($0 < V < V_{e}$)
(1) Stoichiometric calculation of neutralization gives new acid/base concentration. (2) calculate pH using buffer (H-H equation).
Titration curve at equivalence point
$V = V_{e}$
$\ce{mol acid = mol base}$
$c_{0}V_{0} = c_{e}V_{e}$
Titration curve beyond equivalence point
$V > V_{e}$
Calculate pH using excess base that wasn’t consumed in the neutralization reaction.

Polyprotic acid

Description Equations
Polyprotic acid reactions $\color{blue} \ce{H2A + H2O <=> HA- + H3O+} (K_{a1}) \newline \ce{HA- + H2O <=> A^2- + H3O+} (K_{a2}) \newline \ce{A^2- + H2O <=> HA- + OH-} (K_{b1}) \newline \ce{HA- + H2O <=> H2A + OH-} (K_{b2})$
Relationship between dissociation constants $K_{b1} = \dfrac{K_{w}}{K_{a2}}$
$K_{b2} = \dfrac{K_{w}}{K_{a1}}$
Effect of pH on solution composition $\dfrac{\ce{[HA-]}}{\ce{[H2A]}} = \dfrac{K_{a1}}{\ce{[H3O+]}}$
$\dfrac{\ce{[A^2-]}}{\ce{[HA-]}} = \dfrac{K_{a2}}{\ce{[H3O+]}}$
$\ce{p}K_{a1}$ and $\ce{p}K_{a2}$ are located at the intersections of titration curve (half equivalence point).

Exact treatment of acid-base equilibria

Description Equations
pH of dilute weak acid
$x \equiv \ce{[H3O+]}$
$x^{3} + (c_{b} + K_{a})x^{2} - (K_{w} + c_{a}K_{a})x - K_{a}K_{w} = 0$
Amphoteric equilibria
for $\ce{[amph]} \gg K_{a1}$
$\ce{[amph]}K_{a2} \gg K_{w}$
$\ce{pH} \approx \dfrac{1}{2} (\ce{p}K_{a1} + \ce{p}K_{a2})$
$\ce{[H3O+]} \approx \sqrt{K_{a1}K_{a2}}$

Solution Equilibria

Description Equations
Solubility product $\color{blue} \ce{M_aX_b <=> aM^b+ + bX^a-}$
$K_{sp} = \ce{[M^b+]^{a}[X^a-]^{b}}$
Complex ion equilibria
Formation constant
$\color{blue} \ce{M^a+ + X <=> MX^a+} (K_{1}) \newline \ce{MX^a+ + X <=> MX_2^a+} (K_{2}) \newline \ce{M^a+ + 2X <=> MX_2^a+ (K_{f})}$
$K_{f} = K_{1}K_{2}$
Selective precipitation of ions $\color{blue} \ce{M_aX_b <=> aM^b+ + bX^a-}$
$\ce{[M^b+]^{a}} = \dfrac{K_{sp}}{\ce{[X^a-]^{b}}}$
$a\log{\ce{[M^b+]}} = -b\log{\ce{[X^a-]}} + \log K_{sp}$
The linear equation can be plotted on a log-log M vs X graph.
Metal sulfides $\color{blue} \ce{H2S + H2O <=> H3O+ + HS-} \newline \ce{MS + H2O <=> M^2+ + HS- + OH-}$

Electrochemistry

Fundamentals

Description Equations
Galvanic (voltaic) cells spontaneous, produce electricity to do work
Electrolytic cells nonspontaneous, use electricity supply to do work
cathode reduction, gain electron
anode oxidation, lose electron
Electrostatic potential $E = \dfrac{U_{e}}{q}$
Change in electrostatic potential energy $\Delta U_{e} = q\Delta E$
Total charge passed in current in given time $Q = it$
Moles of electrons transferred in current in given time $n = \dfrac{it}{F}$
pH meter reaction at cathode $\color{blue} \ce{2H3O+ + 2e- -> H2 + 2H2O}$
pH meter reaction at anode $\color{blue} \ce{H2 + 2H2O -> 2H3O+ + 2e-}$

Cell potentials and Gibbs free energy

Description Equations
Electrical work
$(\Delta P = 0; \Delta T = 0)$
$w = \Delta U_{e} = -QE_{\text{cell}} = -itE_{\text{cell}}$
$w_{\text{rev}} = \Delta G$
Standard cell potential $E^{\circ}_{\mathrm{cell}} = E^{\circ}_{\mathrm{red}}(\text{cathode}) - E^{\circ}_{\mathrm{red}}(\text{anode})$
Change in Gibbs free energy at standard conditions and standard cell potential $\Delta G^{\circ} = -nFE^{\circ}_{\text{cell}}$
Change in Gibbs free energy at standard conditions and equilibrium constant $\Delta G^{\circ} = -RT \ln K$
Cell potential at standard conditions $E^{\circ}_{\text{cell}} = \dfrac{RT}{nF} \ln K = \dfrac{0.0257\mathrm{V}}{n} \ln K$
Change in Gibbs free energy at nonstandard conditions $\Delta G = \Delta G^{\circ} + RT \ln Q$

Concentration effect and Nerst Equation

Description Equations
Nerst Equation
cell potential at nonstandard conditions
$E = E^{\circ} - \dfrac{RT}{nF} \ln Q$

$E = E^{\circ} - \dfrac{0.0592 \mathrm{V}}{n} \log Q \ (\mathrm{at \ 25^{\circ}C})$
Measuring equilibrium constant from standard cell potential $\ln K = \dfrac{nF}{RT}E^{\circ}_{\text{cell}} \ (\mathrm{at \ 25^{\circ}C})$
$\log K = \dfrac{n}{\mathrm{0.0592 V}} E^{\circ}_{\text{cell}} \ (\mathrm{at \ 25^{\circ}C})$

Kinetics

Rate laws

Description Equations
Rate of reaction $\color{blue}\ce{aA + b B -> cC + dD}$
$\text{rate} = -\dfrac{1}{a}\dfrac{d\ce{[A]}}{dt} = -\dfrac{1}{b}\dfrac{d\ce{[B]}}{dt}$

$\text{rate} = \dfrac{1}{c}\dfrac{d\ce{[C]}}{dt} = \dfrac{1}{d}\dfrac{d\ce{[D]}}{dt}$
First order rate law
Negative line in ln[A] vs t graph.
$\text{rate} = -\dfrac{1}{a}\dfrac{d\ce{[A]}}{dt} = k\ce{[A]}$
$\ln\ce{[A]}_{t} = -akt + \ln\ce{[A]}_{0}$
$\ce{[A]}_{t} = \ce{[A]}_{0} e^{-akt}$
Second order rate law
Positive line in 1/[A] vs t graph.
$\text{rate} = -\dfrac{1}{a}\dfrac{d\ce{[A]}}{dt} = k\ce{[A]}^{2}$

$\dfrac{1}{\ce{[A]}_{t}} = \dfrac{1}{\ce{[A]}_{0}} + akt$
Zeroth order rate law
Negative line in [A] vs t graph.
$\text{rate} = -\dfrac{1}{a}\dfrac{d\ce{[A]}}{dt} = k$
$\ce{[A]}_{t} = -akt + \ce{[A]}_{0}$

Kinetics and chemical equilibrium

Description Equations
Principle of detailed balance
equilibrium rate of elementary reaction is balanced by (equal to) the rate of reverse reaction
$\ce{aA + bB <=>[\mathit{k_{1}}][\mathit{k_{-1}}] cC + dD}$
$k_{1} \ce{[A]^{a}[B]^{b}} = k_{-1} \ce{[C]^{c}[D]^{d}}$
$K_{1} = \dfrac{\ce{[C]^{c}[D]^{d}}}{\ce{[A]^{a}[B]^{b}}}$
$\boxed{K_{1} = \dfrac{k_{1}}{k_{-1}}}$
Overall relationship between equilibrium constant and rate constant $K = \prod\limits_{i} K_{i} = \dfrac{\prod\limits_{i}k_{i}}{\prod\limits_{i}k_{-i}}$

Steady-state approximation

Description Equations
Steady-state approximation
no single step in the reaction is much slower than the others; assume concentration of intermediates remain constant throughout reaction (B is neighboring molecule)
(Specific reaction may differ)
$\color{blue} \ce{A -> C} \ (\text{overall}) \newline \ce{A + B <->[\mathit{k_{1}}][\mathit{k_{-1}}] I + B} \newline \ce{I ->[\mathit{k_{2}}] C}$
$\dfrac{d\ce{[I]}}{dt} = 0 = k_{1}\ce{[A][B]} - k_{-1}\ce{[I][B]} - k_{2} \ce{[I]}$
$[I] = \dfrac{k_{1}\ce{[A][B]}}{k_{-1}\ce{[B]} + k_{2}}$
$\mathrm{rate} = \dfrac{d\ce{[C]}}{dt} = k_{2}\ce{[I]} = \dfrac{k_{1}k_{2}\ce{[A][B]}}{k_{-1}\ce{[B]} + k_{2}}$
Enzyme Kinetics (Michaelis-Menten)
follows analysis from steady-state approximation: intermediate $\ce{[ES]}$ remains constant; total enzyme $\ce{[E_{T}]}$ remains constant
$\color{blue} \ce{E + S -> P} \ (\text{overall}) \newline \ce{E + S <=>[\mathit{k_{1}}][\mathit{k_{-1}}] ES} \newline \ce{ES ->[\mathit{k_{2}}] E + P}$
$\ce{[E_{T}] \equiv [E] + [ES]} \implies \ce{[E] = [E_{T}] - [ES]}$

$\dfrac{d\ce{[ES]}}{dt} = 0 = k_{1} \ce{[E][S]} - k_{-1}\ce{[ES]} - k_{2}\ce{[ES]}$

$0 = k_{1}\ce{[E_{T}][S]} - k_{1}\ce{[ES][S]} - k_{-1}\ce{[ES]} - k_{2}\ce{[ES]}$

$\ce{[ES]} = \dfrac{k_{1}\ce{[E_{T}][S]}}{k_{1}\ce{[S]} + k_{-1} + k_{2}} = \dfrac{\ce{[E_{T}][S]}}{\ce{[S]} + K_{m}}$
Michaelis-Menten equation
rate of enzyme catalysis
$\mathrm{rate} = \dfrac{d\ce{[P]}}{dt} = k_{2}\ce{[ES]} = \dfrac{k_{2}\ce{[E_{T}][S]}}{\ce{[S]} + K_{m}}$
Michaelis-Menten constant $K_{m} = \dfrac{k_{-1}+k_{2}}{k_{1}}$
Maximum rate of enzyme catalysis
$(\ce{[S]} \gg K_{m})$
$\dfrac{d\ce{[P]}}{dt} = \dfrac{k_{2}\ce{[E_{T}][S]}}{\ce{[S]} + K_{m}} = \dfrac{V_{\text{max}}\ce{[S]}}{\ce{[S]} + K_{m}}$
$V_{\text{max}} = k_{2}\ce{[E_{T}]}$
Experimental determination of Michaelis-Menten constant $K_{m} = \ce{[S]} \left( \left( \dfrac{V_{\text{max}}}{dP/dt} \right) - 1 \right)$
Observation from dP/dt vs. [S] graph When $\ce{[S]} = K_{m}$, $\dfrac{d\ce{[P]}}{dt} = \dfrac{1}{2}V_{\text{max}}$

When $\ce{[S]} \rightarrow \infty$, $\dfrac{d\ce{[P]}}{dt} \rightarrow V_{\text{max}}$
Turnover number of enzyme
(when saturated, $\ce{[E_{T}] = [ES]}$)
$k_{\text{cat}} \equiv k_{2} = \dfrac{V_{\text{max}}}{\ce{[E_{T}]}}$
Linearization of Michaelis-Menten equation $\dfrac{1}{dP/dt} = \left( \dfrac{K_{m}}{V_{\text{max}}} \right) \dfrac{1}{\ce{[S]}} + \dfrac{1}{V_{\text{max}}}$

Effect of temperature on reaction rates

Description Equations
Arrhenius equation
temperature dependence of reaction rate
$k = Ae^{-E_{a}/RT}$
Linearization of Arrhenius equation
experimental determination of activation energy
$\ln k = \ln A - \dfrac{E_{a}}{RT}$
$\ln\dfrac{k_{2}}{k_{1}} = -\dfrac{E_{a}}{R} \left( \dfrac{1}{T_{2}} - \dfrac{1}{T_{1}} \right)$

Nuclear Chemistry

Baryons and leptons

Baryon number is conserved.

Types of Baryon Symbol Baryon Number Charge
Proton $\ce{p+}$ +1 +1
Antiproton $\bar{\ce{p}}$ -1 -1
Neutron $\ce{n}$ +1 0
Antineutron $\bar{\ce{n}}$ -1 0

Lepton number is conserved.

Types of Lepton Symbol Lepton Number Charge
Electron $\ce{e-}$, $\beta^{-}$ +1 -1
Positron $\ce{e+}$, $\beta^{+}$ -1 +1
Neutrino $\nu_{e}$ +1 0
Antineutrino $\bar{\nu}_{e}$ -1 0

Nuclear decay process

Decay Type Emitted Particle $\Delta Z$ Atomic Number $\Delta N$ Neutron Number $\Delta A$ Mass Number Example
$\alpha$ decay $\ce{^4_2He}$ -2 -2 -4 $\ce{^238U -> ^234Th + ^4_2He}$
$\beta^{-}$ decay energetic $\ce{e-}, \bar{\nu}_{e}$ +1 -1 0 $\ce{^14C -> ^14N + \beta-} + \bar{\nu}_{e}$
$\beta^{+}$ emission energetic $\ce{e+}, \nu_{e}$ -1 +1 0 $\ce{^22Na -> ^22Ne + \beta+ + \nu_{e}}$
Electron capture $\nu_{e}$ -1 +1 0 $\ce{^207Bi + e- -> ^207Pb + \nu_{e}}$
$\gamma$-ray emission photon $h\nu$ 0 0 0 $\ce{^60Ni^* -> ^60Ni + \gamma}$
Internal conversion $\ce{e-}$ 0 0 0 $\ce{^125Sb^m -> ^125Sb + e-}$
Description Equations
Proton-neutron conversion $\ce{^1_1p+ -> ^1_0n + ^0_1e+ + \nu_e}$
$\ce{^1_0n -> ^1_1p+ + ^0_-1e- + \bar{\nu_{e}}}$

Mass-energy relationship

Description Equations
Mass-energy equivalence $E^{2} = m_{0}^{2}c^{4} + p^{2}c^{2}$
$\Delta E = c^{2} \Delta m \ \ (p = 0)$
Spontaneity of nuclear reactions $\Delta E < 0 \implies \Delta m < 0$
Energy equivalent conversion $\dfrac{1 \mathrm{u}}{931.494 \mathrm{MeV}} = 1$

Kinetics of radioactive decay

Description Equations
Activity $A = -\dfrac{dN}{dt} = kN$
Activity and number of nuclei over time $A_{t} = A_{0}e^{-kt}$
$N_{t} = N_{0} e^{-kt}$
Decay constant and half life $k = \dfrac{\ln 2}{t_{1/2}}$

Introduction to Quantum Mechanics

Waves and energy quantization

Description Equations
Wavelength and frequency of electromagnetic waves $c = \lambda \nu$
Quantization of energy $\varepsilon = nh\nu \newline n = 1, 2, 3, …$
Atomic spectra of H atom $\nu = \left( \dfrac{1}{4} - \dfrac{1}{n^{2}} \right) \times 3.29 \times 10^{15} \ \mathrm{s^{-1}} \newline n = 3,4,5,…$
Energy quantization of photon $\Delta E = h \nu$
Frank-Hertz experiment
verifies Bohr’s model
$\nu = \dfrac{\Delta E}{h} = \dfrac{eV_{\text{thr}}}{h}$

Bohr’s model

Description Equations
Total mechanical energy of H atom $E = \dfrac{1}{2}m_{e}v^{2} - \dfrac{Ze^{2}}{4\pi\epsilon_{0}r}$
Uniform circular motion of electron
a classical description
$\dfrac{Ze^{2}}{4\pi\epsilon_{0}r} = m_{e} \dfrac{v^{2}}{r}$
Quantized angular momentum of electron $L = m_{e}vr = n\dfrac{h}{2\pi} \newline n = 1,2,3,…$
Allowed radius of H atom $r_{e} = \dfrac{\epsilon_{0}n^{2}h^{2}}{\pi Z e^{2}m_{e}} = \dfrac{n^{2}}{Z} a_{0}$
Allowed velocity of H atom $v_{n} = \dfrac{nh}{n\pi m_{e}r_{n}} = \dfrac{Ze^{2}}{2\epsilon_{0}nh}$
Allowed energy of H atom $\begin{aligned}E_{n} &= -\dfrac{Z^{2}e^{4}m_{e}}{8\epsilon_{0}^{2}n^{2}h^{2}} \cr &= -(2.18 \times 10^{-18}\mathrm{J}) \dfrac{Z^{2}}{n^{2}} \cr &= -(13.60 \mathrm{eV}) \dfrac{Z^{2}}{n^{2}}\end{aligned} \newline n = 1,2,3,…$
Emission atomic spectra of H atom $\nu = (3.29 \times 10^{15} \mathrm{s^{-1}})Z^{2} \left( \dfrac{1}{n_{f}^{2}} - \dfrac{1}{n_{i}^{2}} \right) \newline n_{i} > n_{f} = 1,2,3,…$
Absorption atomic spectra of H atom $\nu = (3.29 \times 10^{15} \mathrm{s^{-1}})Z^{2} \left( \dfrac{1}{n_{i}^{2}} - \dfrac{1}{n_{f}^{2}} \right) \newline n_{f} > n_{i} = 1,2,3,…$

Wave-particle duality

Description Equations
Planck’s constant
lazy physicist/chemist
$\hbar = \dfrac{h}{2\pi}$
Conservation of energy in photoelectric effect $h\nu = E_{lost} + K + \Phi$
Work function of metal $\Phi = h\nu_{0}$
Maximum kinetic energy of photoelectrons
$(E_{lost} = 0)$
$E_{\text{max}} = K = \dfrac{1}{2}mv_{e}^{2} = \dfrac{p^{2}}{2m} = h\nu - \Phi$
de Broglie wavelength $\lambda = \dfrac{h}{p} = \dfrac{h}{mv}$
Heisenberg uncertainty principle $(\Delta x)(\Delta p) \ge \dfrac{h}{4\pi} = \dfrac{\hbar}{2}$
1D standing wave $f(x, t) = A\sin(kt)\sin(\omega t)$
Wave traveling to the right $f(x, t) = A\sin(\omega t - kx)$

The Schrodinger equation

Description Equations
Time independent Schrodinger equation $-\dfrac{h^{2}}{8\pi^{2}m} \dfrac{d^{2}\psi(x)}{dx^{2}} + V(x)\psi(x) = E\psi(x)$
$\hat{H}\Psi = E\Psi \newline \hat{H} = -\dfrac{h^{2}}{8\pi^{2}m} \dfrac{d^{2}}{dx^{2}} + V(x)$
Time dependent Schrodinger equation $\hat{H}\Psi = i\hbar \dfrac{\partial\Psi}{\partial t}$
Normalization of wave function $\displaystyle\int_{-\infty}^{\infty} \psi^{*} \psi \ dx = 1$
Boundary conditions of wave functions $\lim\limits_{x \to \pm\infty} \psi(x) = 0$

Particle in a box

Description Equations
Wave function of 1D particles in a box $\psi_{n}(x) = \sqrt{\dfrac{2}{L}} \sin\left( \dfrac{n\pi x}{L} \right)n \newline n = 1,2,3,…$
Allowed energy of 1D particles in a box $E_{n} = \dfrac{n^{2}h^{2}}{8mL^{2}} \newline n = 1,2,3,…$
Allowed energy of 3D particles in cubic boxes $E_{n_{x}n_{y}n_{z}} = \dfrac{h^{2}}{8mL^{2}}[n_{x}^{2} + n_{y}^{2} + n_{z}^{2}] \newline n_{x} = 1,2,3,… \newline n_{y} = 1,2,3,… \newline n_{z} = 1,2,3,…$
Wave function of 2D particles in square boxes $\begin{aligned}&\Psi_{n_{x}n_{y}}(x, y) \cr = &\psi_{n_{x}}(x) \psi_{n_{y}}(y) \cr = &\dfrac{2}{L} \sin \left( \dfrac{n_{x}\pi x}{L} \right) \sin \left( \dfrac{n_{y}\pi y}{L} \right)\end{aligned}$
Wave function of 3D particles in cubic boxes $\begin{aligned}&\Psi_{n_{x}n_{y}n_{z}}(x, y, z) \cr = &\psi_{n_{x}}(x) \psi_{n_{y}}(y) \psi_{n_{z}}(z) \cr = &\left( \dfrac{2}{L} \right)^{3/2} \sin \left( \dfrac{n_{x}\pi x}{L} \right) \sin \left( \dfrac{n_{y}\pi y}{L} \right) \sin \left( \dfrac{n_{z}\pi z}{L} \right)\end{aligned}$

Quantum Mechanics and Atomic Structure

The hydrogen atom

Description Equations
Principle quantum number $n$
determines energy of the electron
$E_{n} = -\dfrac{Z^{2}e^{4}m_{e}}{8\epsilon_{0}^{2}n^{2}h^{2}} \newline = -(2.18 \times 10^{-18}\mathrm{J}) \dfrac{Z^{2}}{n^{2}} \newline = -(13.60 \mathrm{eV}) \dfrac{Z^{2}}{n^{2}} \newline n = 1,2,3,…$
Angular momentum quantum number $l$
determines angular momentum of electron
$L^{2} = l(l+1)\dfrac{h^{2}}{4\pi^{2}} \newline l = 0,1,…,n-1$
Magnetic quantum number $m$
determines z-component of angular momentum of electron
$L_{z} = m\dfrac{h}{2\pi} \newline m = -l, -l+1, …, 0, …, l-1, l$
Spin $m_{s} = -\dfrac{1}{2}, \dfrac{1}{2}$
Wave function of electron in quantum state $(n, l, m)$ have radial part and angular part $\psi_{nlm}(r, \theta, \phi) = R_{nl}(r) Y_{lm}(\theta, \phi)$
Wave function as probability density $(\psi_{nlm})^{2} dV = [R_{nl}(r)]^{2} [Y_{lm}]^{2} dV \newline dV = r^{2}\sin\theta \ dr \ d\theta \ d\phi$
Radial probability density (s orbital) $r^{2} [R_{nl}(r)]^{2} \ dr$
Average value of distance of electron from nucleus in an orbital $\bar{r}_{nl} = \dfrac{n^{2}a_{0}}{Z} \left[ 1 + \dfrac{1}{2} \left[ 1 - \dfrac{l(l+1)}{n^{2}} \right] \right]$

Hartree orbital model for many-electron atoms

Description Equations
Orbital approximation for atoms $\psi_{\text{atom}} = \prod\limits_{i} \varphi_{i}(r_{i})$
Coulomb potential of electron moving in shell n and effective nuclear charge $V_{n}^{\text{eff}}(r) \approx -\dfrac{Z_{\text{eff}}(n)e^{2}}{r}$

Quantum Mechanics and Molecular Structure

Exact molecular model for $\ce{H2+}$

Description Equations
Born-Oppenheimer approximation
light slow nuclei; heavy fast electron
$\psi \approx \psi_{e^{-}} + \psi_{\text{nuclei}}$
$E_{\text{total}} = E_{e^{-}} + E_{\text{nuclei}}$

Molecular Orbital (MO) and Linear Combination of Atomic Orbitals (LCAO) Approximation

Description Equations
MO-LCAO approximation for bonding orbital of $\ce{H2+}$ $1\sigma_{g} \approx \sigma_{g1s} = C_{g}[\varphi_{1s}^{A} + \varphi_{1s}^{B}]$
MO-LCAO approximation for antibonding orbital of $\ce{H2+}$ $1\sigma_{u}^{*} \approx \sigma_{u1s}^{*} = C_{u}[\varphi_{1s}^{A} - \varphi_{1s}^{B}]$
Bond order $\mathrm{B.O.} = \frac{1}{2} (\text{bonding } e^{-} - \text{antibonding } e^{-})$

Spectroscopy

Electronic spectroscopy

Ultraviolet-Visible (UV-Vis) Spectroscopy

Description Equations
Transmittance
($I_{0}$ is incident light; $I$ is transmitted light)
$T = \dfrac{I}{I_{0}}$
Absorbance $A = \log \dfrac{I_{0}}{I} \newline A = -\log T$
Beer’s Law
absorbance depends on molar absorption coefficient, concentration, and path legth
$I = I_{0}10^{-\varepsilon c l}$
$A = \varepsilon c l$

Vibrational spectroscopy - harmonic oscillator model

Infrared (IR) Spectroscopy

Description Equations
Reduced mass of system $\mu = \dfrac{m_{1}m_{2}}{m_{1}+m_{2}}$
Frequency $\omega = \sqrt{\dfrac{k}{\mu}}$
Characteristic frequency $\nu = \dfrac{\omega}{2\pi} = \dfrac{1}{2\pi} \sqrt{\dfrac{k}{\mu}}$
Vibrational energy $E_{n} = (n + \dfrac{1}{2})\hbar\omega = (n + \dfrac{1}{2})h\nu \newline n = 1,2,3,…$