Entropy |
S=kBlnΩ |
Entropy change |
ΔS=∫ifTdqrev |
ΔSsys for reversible isothermal process |
ΔS=∫ifTdqrev=T1∫ifdqrev=Tqrev |
ΔSsys for reversible isothermal process - compression/expansion of ideal gas |
qrev=nRTln(V1V2) ΔS=nRln(V1V2) |
ΔSsys for reversible isothermal process - phase transitions |
qrev=ΔHfus ΔSfus=Tfusqrev=TfusΔHfus |
ΔSsys for reversible adiabatic process |
q=0 ΔS=0 |
ΔSsys for reversible isochoric process |
ΔV=0 dqrev=ncVdT ΔS=ncV∫T1T2TdT=ncVln(T1T2) |
ΔSsys for reversible isobaric process |
ΔP=0 dqrev=ncPdT ΔS=ncP∫T1T2TdT=ncPln(T1T2) |
Entropy change of surrounding |
ΔSsurr=Tsurr−ΔHsys |
Second law of thermodynamics |
ΔS≥Tqrev |
Enthalpy of spontaneous process |
ΔStotal=ΔSsys+ΔSsurr>0 |
Standard molar entropy |
S∘=∫0K298.15KTcPdT+ΔS(phase changes between 0K and 298.15K) |
Gibbs free energy for reaction at constant temperature |
ΔG=ΔH−TΔS |
Efficiency of Carnot engines |
ε=heat into systemwork on surrounding=ThighThigh−Tlow=1−ThighTlow |
Relationship between heat and temperature in Carnot cycle |
Thighqhigh+Tlowqlow=0 |
Work done by Carnot cycle in one cycle |
wcycle=−nR(Thot−Tcold)lnVAVB |