Contents

CHEM 145 Honors General Chemistry I

Gas

Kinetic Theory of Gas

Quantity Unit Definition
Pressure $\mathrm{N/m^{2}}$ $P = \dfrac{F}{A}$
Mole fraction of $a$ - $X_{a} = \dfrac{n_{a}}{n_{\mathrm{total}}}$
Partial pressure of $a$ $\mathrm{N/m^{2}}$ $P_{a} = X_{a}P_{\mathrm{total}}$
Pressure-volume work $\mathrm{J}$ $W = -P\Delta V$
Compressibility of gas - $z = \dfrac{PV}{nRT}$
Description Equations
Ideal gas law $PV = nRT$
Ideal gas constant and Boltzmann constant $R = N_{A}k_{B}$
Average kinetic energy of one gas molecule $\varepsilon = \dfrac{3}{2}k_{B}T$
Root mean square speed gas $v_{\mathrm{RMS}} = \sqrt{\dfrac{3RT}{\mathcal{M}}} = \sqrt{\dfrac{3k_{B}T}{m}}$
Mean speed of gas $\bar{v} = \sqrt{\dfrac{8RT}{\pi\mathcal{M}}} = \sqrt{\dfrac{8k_{B}T}{\pi m}}$
Most probable speed of gas $v_{\mathrm{mp}} = \sqrt{\dfrac{2RT}{\mathcal{M}}} = \sqrt{\dfrac{2k_{B}T}{m}}$
Maxwell-Boltzmann speed distribution $f(v) = 4\pi \left(\dfrac{m}{2\pi k_{B}T}\right) v^{2} \exp\left(\dfrac{-mv^{2}}{2k_{B}T}\right)$
Van der Waals equation of state $(P + a\dfrac{n^{2}}{V^{2}})(V - bn) = nRT$
Lennard-Jones potential $V_{\mathrm{LJ}} = 4\varepsilon \left(\left(\dfrac{\sigma}{R}\right)^{12} - \left(\dfrac{\sigma}{R}\right)^{6} \right)$

Molecular Collisions and Rate Processes

Description Equations
Molecule collision rate with wall $Z_{w} \propto \dfrac{1}{4}\dfrac{N}{V}\bar{v}A = \dfrac{1}{4}\dfrac{N}{V}\sqrt{\dfrac{8RT}{\pi\mathcal{M}}}A$
Graham’s law of effusion $\dfrac{\text{rate of effusion of A}}{\text{rate of effusion of B}} = \dfrac{N_{\mathrm{A}}}{N_{\mathrm{B}}} \sqrt{\dfrac{\mathcal{M}_{\mathrm{B}}}{\mathcal{M}_{\mathrm{A}}}}$
Molecule-molecule collision rate $Z_{1} = 4\dfrac{N}{V}d^{2}\sqrt{\dfrac{\pi RT}{\mathcal{M}}}$
Mean free path $\lambda = \dfrac{\bar{v}}{Z_{1}} = \dfrac{V}{\sqrt{2}\pi d^{2}N}$
Mean square displacement of diffusion in 3D $\overline{\Delta r}^{2} = 6Dt$
Gas diffusion constant $D = \dfrac{3}{8} \sqrt{\dfrac{RT}{\pi\mathcal{M}}} \dfrac{V}{Nd^{2}}$

Intermolecular Interactions

Quantity Unit Definition
Electrostatic force $\mathrm{N}$ $F = \dfrac{q_{1}q_{2}}{4\pi\varepsilon r^{2}}$
Electrostatic potential energy $\mathrm{N}$ $V = \dfrac{q_{1}q_{2}}{4\pi\varepsilon r}$
Dipole moment $\mathrm{C\cdot m}$ $\mu = qd$
Polarizability $\mathrm{C\cdot m^{2}/V}$ $\alpha = \dfrac{\mu}{E}$
Induced dipole moment $\mathrm{C\cdot m}$ $\mu^{*} = \alpha E$
Description Equations
Ion-ion interactions $E \propto \dfrac{q_{1}q_{2}}{r}$
Ion-dipole interactions $E \propto -\dfrac{q\mu}{r^{2}}$
Dipole-dipole interactions $E \propto -\dfrac{\mu_{1}\mu_{2}}{r^{3}}$
Induced-dipole-induced-dipole (London) $E \propto -\dfrac{\alpha_{1}\alpha_{2}}{r^{6}}$
Dipole-induced-dipole $E \propto -\dfrac{\mu_{1}^{2}\alpha_{2}}{r^{6}}$
Rotating fixed dipole (Keesom) $E \propto -\dfrac{\mu_{1}^{2}\mu_{2}^{2}}{r^{6}}$

Thermodynamics

First law of thermodynamics

Quantity Unit Definition
Specific heat capacities $\mathrm{J \cdot kg^{-1} \cdot K^{-1}}$ $q = mc_{s}\Delta T = n\bar{c}\Delta T$
Heat capacity $\mathrm{J/K}$ $q = C\Delta T$
Molar heat capacities $\mathrm{J \cdot mol^{-1} \cdot K^{-1}}$ $q_{V} = nc_{V}\Delta T$
$q_{P} = nc_{P}\Delta T$
Enthalpy $\mathrm{J}$ $H = U + PV$
Description Equations
First law of thermodynamics $\Delta U = q + w$
$dU = \cancel{d}q + \cancel{d}w$
$\Delta U_{\mathrm{univ}} = \Delta U_{\mathrm{sys}} + \Delta U_{\mathrm{surr}} = 0$
Enthalpy change $q_{P} = \Delta (U + PV) = \Delta H$
Molar heat capacity of monoatomic ideal gas at constant volume $c_{V} = \dfrac{3}{2}R$
Molar heat capacity of any ideal gas at constant pressure $c_{P} = c_{V} + R = \dfrac{5}{2}R$
Internal energy change of any ideal gas $\Delta U = nc_{V}\Delta T$
Enthalpy change of any ideal gas $\begin{aligned}\Delta H &= nc_{P}\Delta T \cr &= \Delta U + \Delta(PV) \cr &= nc_{V}\Delta T + nR\Delta T\end{aligned}$
Hess’s law $\Delta H^{\circ} = \sum\limits_{i}^{\text{prod}} n_{i}\Delta H_{i}^{\circ} - \sum\limits_{j}^{\text{react}} n_{j}\Delta H_{j}^{\circ}$
Molality $b = \dfrac{n_{\mathrm{solute}}}{m_{\mathrm{solvent}}}$
Boiling point elevation
($i$ is vant’s Hoff dissociation factor)
$\Delta T_{\mathrm{boil}} = ibK_{\mathrm{boil}}$
Freezing point depression
($i$ is vant’s Hoff dissociation factor)
$\Delta T_{\mathrm{freeze}} = ibK_{\mathrm{freeze}}$
Reversible isothermal process of ideal gas $\Delta T = 0$
$\Delta U = 0$
$\Delta H = 0$
$w = -\displaystyle\int_{V_{1}}^{V_{2}} P \ dV = -nRT \ln\dfrac{V_{2}}{V_{1}}$
$q = -w$
Reversible adiabatic process of ideal gas $q = 0$
$\Delta U = nc_{V}\Delta T = w$
$\Delta H = nc_{P}\Delta T$
$\gamma = \dfrac{c_{P}}{c_{V}}$
$T_{1}V_{1}^{\gamma - 1} = T_{2}V_{2}^{\gamma - 1}$
$P_{1}V_{1}^{\gamma} = P_{2}V_{2}^{\gamma}$

Second law of thermodynamics

Description Equations
Entropy $S = k_{B} \ln\Omega$
Entropy change $\Delta S = \displaystyle\int_{i}^{f} \dfrac{dq_{\mathrm{rev}}}{T}$
$\Delta S_{\mathrm{sys}}$ for reversible isothermal process $\Delta S = \displaystyle\int_{i}^{f} \dfrac{dq_{\mathrm{rev}}}{T} = \dfrac{1}{T} \displaystyle\int_{i}^{f} dq_{\mathrm{rev}} = \dfrac{q_{\mathrm{rev}}}{T}$
$\Delta S_{\mathrm{sys}}$ for reversible isothermal process - compression/expansion of ideal gas $q_{\mathrm{rev}} = nRT \ln \left( \dfrac{V_{2}}{V_{1}} \right)$
$\Delta S = nR \ln \left( \dfrac{V_{2}}{V_{1}} \right)$
$\Delta S_{\mathrm{sys}}$ for reversible isothermal process - phase transitions $q_{\mathrm{rev}} = \Delta H_{\mathrm{fus}}$
$\Delta S_{\mathrm{fus}} = \dfrac{q_{\mathrm{rev}}}{T_{\mathrm{fus}}} = \dfrac{\Delta H_{\mathrm{fus}}}{T_{\mathrm{fus}}}$
$\Delta S_{\mathrm{sys}}$ for reversible adiabatic process $q = 0$
$\Delta S = 0$
$\Delta S_{\mathrm{sys}}$ for reversible isochoric process $\Delta V = 0$
$dq_{\mathrm{rev}} = nc_{V}dT$
$\Delta S = nc_{V} \displaystyle\int_{T_{1}}^{T_{2}} \dfrac{dT}{T} = nc_{V} \ln \left( \dfrac{T_{2}}{T_{1}} \right)$
$\Delta S_{\mathrm{sys}}$ for reversible isobaric process $\Delta P = 0$
$dq_{\mathrm{rev}} = nc_{P}dT$
$\Delta S = nc_{P} \displaystyle\int_{T_{1}}^{T_{2}} \dfrac{dT}{T} = nc_{P} \ln \left( \dfrac{T_{2}}{T_{1}} \right)$
Entropy change of surrounding $\Delta S_{\mathrm{surr}} = \dfrac{-\Delta H_{\mathrm{sys}}}{T_{\mathrm{surr}}}$
Second law of thermodynamics $\Delta S \geq \dfrac{q_{\mathrm{rev}}}{T}$
Enthalpy of spontaneous process $\Delta S_{\mathrm{total}} = \Delta S_{\mathrm{sys}} + \Delta S_{\mathrm{surr}} > 0$
Standard molar entropy $S^{\circ} = \displaystyle\int_{0K}^{298.15\mathrm{K}} \dfrac{c_{P}}{T} dT + \Delta S \text{(phase changes between 0K and 298.15K)}$
Gibbs free energy for reaction at constant temperature $\Delta G = \Delta H - T\Delta S$
Efficiency of Carnot engines $\begin{aligned}\varepsilon &= \dfrac{\text{work on surrounding}}{\text{heat into system}} \cr &= \dfrac{T_{\mathrm{high}} - T_{\mathrm{low}}}{T_{\mathrm{high}}} = 1-\dfrac{T_{\mathrm{low}}}{T_{\mathrm{high}}}\end{aligned}$
Relationship between heat and temperature in Carnot cycle $\dfrac{q_{\mathrm{high}}}{T_{\mathrm{high}}} + \dfrac{q_{\mathrm{low}}}{T_{\mathrm{low}}} = 0$
Work done by Carnot cycle in one cycle $w_{\mathrm{cycle}} = -nR(T_{\mathrm{hot}} - T_{\mathrm{cold}}) \ln\dfrac{V_{B}}{V_{A}}$

Equilibrium

Description Equations
Law of mass action - partial pressure $K = \dfrac{\prod\limits_{j}(P_{\text{product }j} / P_{\mathrm{ref}})_{eq}^{b_{j}}}{\prod\limits_{i}(P_{\text{reactant }i} / P_{\mathrm{ref}})_{eq}^{a_{i}}}$
Law of mass action - concentration $K = \dfrac{\prod\limits_{j}(c_{\text{product }j} / c_{\mathrm{ref}})_{eq}^{b_{j}}}{\prod\limits_{i}(c_{\text{reactant }i} / c_{\mathrm{ref}})_{eq}^{a_{i}}}$
Gibbs free energy of isothermal reactions $\Delta G = -T\Delta S = nRT\ln\dfrac{P_{2}}{P_{1}}$
Equilibrium expression: relationship between Gibbs free energy and equilibrium constant (gas phase reaction) $\Delta G^{\circ} = -RT\ln K$
Equilibrium expression: alternative form $\ln K = -\dfrac{\Delta G^{\circ}}{RT} = - \dfrac{\Delta H^{\circ}}{RT} + \dfrac{\Delta S}{R}$
Change in Gibbs free energy at non-standard conditions $\Delta G = \Delta G^{\circ} + RT\ln Q = RT\ln\dfrac{Q}{K}$
Reaction quotient - partial pressure $Q = \dfrac{\prod\limits_{j}(P_{\text{product }j} / P_{\mathrm{ref}})^{b_{j}}}{\prod\limits_{i}(P_{\text{reactant }i} / P_{\mathrm{ref}})^{a_{i}}}$
Reaction quotient - concentration $Q = \dfrac{\prod\limits_{j}(c_{\text{product }j} / c_{\mathrm{ref}})^{b_{j}}}{\prod\limits_{i}(c_{\text{reactant }i} / c_{\mathrm{ref}})^{a_{i}}}$
vant’s Hoff equation
temperature dependence of equilibrium constant of a reaction
$\ln\dfrac{K_{2}}{K_{1}} = -\dfrac{\Delta H^{\circ}}{R} \left( \dfrac{1}{T_{2}} - \dfrac{1}{T_{1}} \right)$
Clapeyron equation
for two phase in equilibrium, construct phase diagram by finding change of pressure as a function of temperature
$\left( \dfrac{dP}{dT} \right)_{eq} = \dfrac{\Delta S}{\Delta V} = \dfrac{\Delta H}{T\Delta V}$
Clausius-Clapeyron equation
temperature dependence of vapor pressure for condensed phase and gas phase in equilibrium
$\ln\dfrac{P_{2}}{P_{1}} = -\dfrac{\Delta H_{\mathrm{vap}}}{nR} \left( \dfrac{1}{T_{2}} - \dfrac{1}{T_{1}} \right)$
Clausius-Clapeyron equation
for $P_{1} = P^{\circ}; \Delta S^{\circ} = \dfrac{\Delta H^{\circ}}{T^{\circ}}$
$\ln\dfrac{P_{2}}{P^{\circ}} = -\dfrac{\Delta H_{\mathrm{vap}}}{nRT_{2}} + \dfrac{\Delta S^{\circ}_{\mathrm{vap}}}{nR}$