Calculus Based Statistics

Contents

Based on Probability and Statistics for Engineering and the Sciences 9e.

Description Equations
Sample mean xˉ=1ni=1nxi\bar{x} = \dfrac{1}{n}\sum\limits_{i=1}^n x_i
Sample median x~={middle ordered valueif oddaverage of two middle ordered valuesif even\tilde{x} = \footnotesize \begin{cases}\text{middle ordered value} &\text{if odd} \cr \text{average of two middle ordered values} &\text{if even} \end{cases}
Deviation xixˉx_i - \bar{x}
Sum of squared deviation Sxx=(xixˉ)2=xi21n(xi)2=xi2n(xˉ)2\begin{aligned} S_{xx} &= \textstyle \sum(x_i - \bar{x})^2 \cr &= \textstyle \sum x_i^2 - \dfrac{1}{n}(\sum x_i)^2 \cr &= \textstyle \sum x_i^2 - n(\bar{x})^2 \end{aligned}
Sample variance s2=Sxxn1s^2 = \dfrac{S_{xx}}{n-1}
Sample standard deviation s=s2s = \sqrt{s^2}
Properties of sample variance xi=xi+c    sx2=sx2xi=cxi    sx2=c2sx2x_i' = x_i + c \implies s_{x'}^2 = s_{x}^2 \newline x_i' = cx_i \implies s_{x'}^2 = c^2s_{x}^2
Description Equations
Sample space S\mathcal{S}
Event AA
Union (or) ABA \cup B
Intersection (and) ABA \cap B
Complement (not) AA'
Null event \varnothing
Disjoint (mutually exclusive) AB=A \cap B = \varnothing
Probability of event AA P(A)P(A)
Description Equations
Non-negativity P(A)0P(A) \ge 0
Probability of event in sample space P(S)=1P(\mathcal{S}) = 1
Addition of infinite disjoint events i=1Ai=    P(i=1Ai)=i=1P(Ai)\bigcap\limits_{i=1}^\infty A_i = \varnothing \implies P\left(\bigcup\limits_{i=1}^\infty A_i\right) = \sum\limits_{i=1}^\infty P(A_i)
Description Equations
Null event and zero probability P()=0P(\varnothing) = 0
Probability of event and its complement P(A)+P(A)=1P(A) + P(A') = 1
Maximum probability P(A)1P(A) \le 1
Addition of disjoint events P(AB)=P(A)+P(B)P(A \cup B) = P(A) + P(B)
Addition of any two events P(ABC)=P(A)+P(B)P(AB)P(A \cup B \cup C) = P(A) + P(B) - P(A \cap B)
Addition of any three events P(AB)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)P(A \cup B) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)
Description Equations
Conditional probability of AA given BB occured P(AB)=P(AB)P(B)P(A\vert B) = \dfrac{P(A \cap B)}{P(B)}
Probability of event intersection P(AB)=P(AB)P(B)P(A \cap B) = P(A \vert B)P(B)
Law of total probability i=1kAi=    P(B)=i=1kP(BAi)P(Ai)\bigcap\limits_{i=1}^{k} A_i = \varnothing \implies P(B) = \sum\limits_{i=1}^{k} P(B \vert A_i)P(A_i)
Bayes' Theorem P(AB)=P(BA)P(A)P(B)P(A \vert B)={\dfrac {P(B \vert A)P(A)}{P(B)}}
Bayes' Theorem P(AjB)=P(AjB)P(B)=P(BAj)P(Aj)i=1kP(BAi)P(Ai)P(A_j \vert B) = \dfrac{P(A_j \cap B)}{P(B)} = \dfrac{P(B \vert A_j)P(A_j)}{\sum\limits_{i=1}^{k} P(B \vert A_i)P(A_i)}
Description Equations
Independent events P(AB)=P(A)P(A \vert B) = P(A)
Dependent events P(AB)P(A)P(A \vert B) \not= P(A)
Probability of independent event intersection P(AB)=P(A)    P(AB)=P(A)P(B)P(A \vert B) = P(A) \iff P(A \cap B) = P(A)P(B)
Mutually independent events P(i=1kAi)=i=1kP(Ai)P(\bigcap\limits_{i=1}^k A_i) = \prod\limits_{i=1}^k P(A_i)
Description Equations
kk-tuples Ordered collection of kk elements
Product rule for kk-tuples A set of kk-tuples with probability pip_i for iith element has pi\prod p_i possible kk-tuples.
Permutations (ordered subset) of size k formed from n individuals Pk,n=n!(nk)!P_{k, n} = \dfrac{n!}{(n-k)!}
Combinations (unordered subset) of size k formed from n individuals Ck,n=(nk)=Pk,nk!=n!k!(nk)!\displaystyle C_{k, n} = \binom{n}{k} = \dfrac{P_{k, n}}{k!} = \dfrac{n!}{k!(n-k)!}
Description Equations