AMATH 351 Differential Equations and Applications
Contents
First Order Differential Equations
First order ODE concepts
- Differential equations (DE) - relationship between an unknown function $y$ and its derivative
- $F(y(x), y'(x), y''(x), …) = 0$
- Order - order of the highest order derivative in the DE
- Ordinary differential equation (ODE) - contains derivative with respect to only 1 variable
- Partial differential equation (PDE) - contains derivative with respect to multiple variables
- Linear - unknowns of DE do not appear as argument of nonlinear functions or multiply with each other or themselves
- Valid solution - a solution of an ODE that does not…
- have a complex number
- have $\lim\limits_{x\to a} = \infty$ ($\lim\limits_{x\to \infty} = \infty$ is ok)
- have division by zero
- have undefined operation (e.g. $\ln(-2)$)
- Interval of validity - the largest interval where the solution is valid.
- Distinct solution - $y_{1}(x) \not = y_{2}(x)$ for some $x$
Existence and uniqueness theorem
- 1st order ODE
- Consider the IVP $y' = f(t, y)$, $y(0) = 0$.
- first order ODE only
- If $f$ and $\frac{\partial f}{\partial y}$ are continuous for $\lvert t \rvert \le a, \lvert y \rvert \le b$,
- then there exists a $\lvert t \rvert \le h \le a$ such that there exists a unique solution $y(t) = \phi(t)$ of the IVP.
Solving initial value problems (IVP)
Given some initial values $y(0) = a_{0}, y'(0) = a_{1}, …, y^{(n)}(0) = a_{n}$. Solve the ODE $F(y(x), y'(x), y''(x), …) = 0$
- Find the general solution to the ODE (or verify a given solution).
- Plug in any initial values to determine the values of unknown constants in the ODE general solution.
- Check if there is any additional prompt to do with the solution of the ODE.
Solving ODEs using separation of variables
- 1st order
- Nonlinear, linear
- Separable
- Write the DE in the form of separable DE $\dfrac{dy}{dx} = g(x) h(y)$.
- Check if $h(y) = 0$ generates trivial solutions.
- Separate the $x$ and $y$ terms: $\dfrac{dy}{h(y)} = g(x) dx$. (Don’t consider int. const.)
- Integrate both sides and add constant of integration: $\displaystyle\int\dfrac{dy}{h(y)} = \int g(x) dx$.
- Solve for $y$ for explicit solution.
- IVP
Solving ODEs using integrating factors
- 1st order
- Linear
- Write the DE in the form of $y'(x) + p(x)y(x) = q(x)$.
- Find the integrating factor $\mu(x) = \exp(\int p(x)dx)$.
- The solution is in the form $y(x) = \dfrac{\displaystyle\int \mu(x)q(x)dx + C}{\mu(x)}$.
- IVP
Solving exact ODEs
- 1st order
- Nonlinear, linear
- Exact
- Write the DE in the form of $N(x, y)y' + M(x, y) = 0$
- Let $y = f(x, y)$.
- Let $M(x, y) = \dfrac{\partial f}{\partial x}$, and $N(x, y) = \dfrac{\partial f}{\partial y}$
- Check if the DE is an exact DE by verifying $\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$
- Find the solution $f(x, y)$ using one of the following methods:
-
Method A1
- Find $\displaystyle f(x, y) = \int \partial f = \int M \ \partial x = f_{\text{main}}(x, y) + h(y)$.
- Solve for $h'(y)$ in $N = \dfrac{\partial f}{\partial y} = \dfrac{\partial f_{\text{main}}}{\partial y} + h'(y)$.
- Solve for $h(y)$ and plug in $f(x, y)$.
-
Method A2
- Find $\displaystyle f(x, y) = \int \partial f = \int N \ \partial y = f_{\text{main}}(x, y) + g(x)$.
- Solve for $g'(x)$ in $M = \dfrac{\partial f}{\partial x} = \dfrac{\partial f_{\text{main}}}{\partial x} + g'(x)$.
- Solve for $g(x)$ and plug in $f(x, y)$.
-
Method B
- Do not consider int. const. $g(x)$ and $h(y)$ in the following steps.
- Find $\displaystyle f_{1}(x, y) \equiv \int \partial f = \int M \ \partial x \equiv f_{\text{mixed-terms}}(x, y) + f_{\text{y-terms}}(y)$
- Find $\displaystyle f_{2}(x, y) \equiv \int \partial f = \int N \ \partial y \equiv f_{\text{mixed-terms}}(x, y) + f_{\text{x-terms}}(x)$
- Match up the terms to get the solution
$f(x, y) = f_{\text{mixed-terms}}(x, y) + f_{\text{x-terms}}(x) + f_{\text{y-terms}}(y) = C$
-
- IVP
Solving ODEs using substitution
- 1st order
- Nonlinear, linear
- Substitute function $y$ with $u$ to find an easy-to-solve ODE by…
- Given DE $y' = f(x, y)$,
- write the DE in terms of $y'$
- find the substitution $u = u(x, y(x))$
- find the inverse substitution $y = y(x, u(x))$
- By chain rule, find $u' = \dfrac{\partial u}{\partial x} + \dfrac{\partial u}{\partial y} y'$.
- Substitution (replace $y'$ with original ODE):
$u' = \dfrac{\partial u}{\partial x} + \dfrac{\partial u}{\partial y} y' \xleftarrow{y'} y' = f(x, y)$
$u' = \dfrac{\partial u}{\partial x} + \dfrac{\partial u}{\partial y} f(x, y) \equiv F(x, y, u)$ - Substitution (replace $y$ with inverse substitution):
$u' = F(x, y, u) \xleftarrow{y} y(x, u(x))$
$u' = F(x, y(x, u), u) \equiv G(x, u)$
- Given DE $y' = f(x, y)$,
- Solve the ODE $u' = G(x, u)$ for $u(x)$.
- Substitution:
$y(x, u(x)) \xleftarrow{u(x)} u(x)$
$y(x)$ - IVP
Mathematical modeling
Radioactive decay
Description | Equations |
---|---|
DE of radioactive decay | $\dfrac{dN}{dt} = -k N(t)$ |
Number of nuclei over time (solution) | $N(t) = N(0)e^{-kt} = N_{0}e^{-kt}$ |
Half life | $N(\tau) = \dfrac{N_{0}}{2}$ |
Decay constant | $k = \dfrac{\ln2}{\tau}$ |
Radioactive dating | $t = \dfrac{\ln \left( \dfrac{N_{1}(t)}{N_{2}(t)} \dfrac{N_{2}(0)}{N_{1}(0)} \right)}{\ln 2} \dfrac{\tau_{1}\tau_{2}}{\tau_{1} - \tau_{2}}$ |
Other equations
Description | Equations |
---|---|
Logistic equation ($r, k > 0$) |
$P'(t) = r \left( 1-\dfrac{P}{k} \right)P$ |
Bernoulli equation | $y' + p(t)y = q(t)y^{n}$ |
General solutions of Bernoulli equation ($n = 1,2,3$) |
$n = 0: y(t) = \dfrac{\displaystyle\int e^{\int p(t) dt} q(t) dt + C}{e^{\int p(t) dt}} \newline n = 1: y(t) = Ce^{\int q(t)-p(t) \ dt} \newline n = 2: y(t) = \dfrac{-e^{-\int p(t) dt}}{\displaystyle\int e^{-\int p(t) dt} q(t) dt + C}$ |
General solutions of Bernoulli equation | $\forall n: y(t) = \left( \dfrac{1-n}{f(t)} \displaystyle\int q(t)f(t) dt \right)^{1/(1-n)}$ where $f(t) = e^{\int (1-n) p(t) dt}$ |
Riccati equation | $y' = q_{0}(t) + q_{1}(t)y + q_{2}(t)y^{2}$ |
Solving Riccati equation known particular solution $y_{1}$ | $y = y_{1} + \dfrac{1}{v(t)}$, where $v$ satisfies $v'(t) = -(q_{1} + 2q_{2}y_{1})v - q_{2}$ |
General solutions of Riccati equation known particular solution $y_{1}$ |
$y = y_{1} + \dfrac{\mu(t)}{-\displaystyle\int \mu(t)q_{2} dt + C}$ where $\mu(t) = e^{\int q_{1}+2q_{2}y_{1} \ dt}$ |
Stability and phase plane analysis
- Plot $P'(t)$ vs $P(t)$.
- Find fixed point $P^{*}$ such that $P' = 0$
- x-intercept of $P'(t)$ vs $P(t)$ plot
- a solution with initial value $P(0) = P^{*}$ is constant over time
- Draw flow arrows near fixed points
- $P' > 0$ flows to the right
- $P' < 0$ flows to the left
- Identify stability of fixed points by flow arrows
- stable - solution approaches the fixed point
- unstable - solution diverges from the fixed point
- semi-stable - solution approaches the fixed point from one side and diverges from another
- Sketch solution $P(t)$ vs. $t$ so that
- $P$ increases in region flow to the right
- $P$ decreases in region flow to the left
- solution approaches to stable fixed point
- solution diverges from unstable fixed point
Second Order Differential Equations
Second order ODE concepts
- Second order linear differential equation - $r(x)y'' + p(x)y' + q(x)y = g(x)$
- Homogeneous - $g(x) = 0$
- Non-homogeneous - $g(x) \not= 0$
- Linearly independent - $c_{1}f(x) + c_{2}g(x) = 0$ can only be satisfied by choosing $c_{1} = c_{2} = 0$ for functions $f, g$
- Wronskian - $W(f, g)(x) = fg' - f' g$
Principle of superposition
-
2nd order homogeneous ODE
-
Consider 2nd order homogeneous ODE $r(x)y'' + p(x)y' + q(x)y = 0$.
-
If Wronskian $W(y_{1}, y_{2}) \not = 0$ ($y_{1}$ and $y_{2}$ are linearly independent solution of the ODE),
- then the general solution of the ODE is $y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x)$.
Wronskian and linear (in)dependence
- Two functions $f$ and $g$ are linearly dependent
- if their Wronskian $W(f, g)(x) = fg' - f' g = 0$.
- Corollary
- two linearly independent functions $f$ and $g$ has $W(f, g)(x) \not= 0$.
Abel’s theorem
- If $y_{1}$ and $y_{2}$ be any two solutions of $y'' + p(x)y' + q(x)y = 0$,
- then $W(y_{1}, y_{2}) = xe^{-\int p(d) dx}$.
- Corollary: reduction of order formula
- Known $y_{1}$, then $y_{2} = y_{1}\displaystyle\int\dfrac{W}{y_{1}^{2}}dx$
Euler’s formula
- $e^{i\beta x} = \cos(\beta x) + i\sin(\beta x)$
- $e^{-i\beta x} = \cos(\beta x) - i\sin(\beta x)$
Solving 2nd order homogeneous constant coefficient ODEs
- 2nd order
- Linear
- Constant coefficient
- Homogeneous
- Write the ODE in the form of $ay'' + by' + cy = 0$.
- Write the characteristic equation $a\lambda^{2} + b\lambda + c = 0$.
- Solve the characteristic equation $\lambda_{1}, \lambda_{2} = \dfrac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$.
- If $\lambda_{1} \not = \lambda_{2}$ and $\lambda_{1}, \lambda_{2} \in \Reals$,
- then the general solution is $y(x) = c_{1}e^{\lambda_{1}x} + c_{2}e^{\lambda_{2}x}$.
- If $\lambda_{1} = \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \Reals$,
- then the general solution is $y(x) = c_{1}e^{\lambda_{1}x} + c_{2}xe^{\lambda_{1}x}$.
- by Abel’s theorem and reduction of order
- If $\lambda_{1} \not = \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \Complex$, where $\lambda_{1}, \lambda_{2} = \alpha \pm i\beta$,
- then the general solution is $y(x) = c_{1}e^{\alpha x} \cos(\beta x) + c_{2}e^{\alpha x} \sin(\beta x)$,
- where $\alpha = -\dfrac{b}{2a}$, $\beta = \dfrac{\sqrt{4ac-b^{2}}}{2a}$.
- by Euler’s formula
- If $\lambda_{1} \not = \lambda_{2}$ and $\lambda_{1}, \lambda_{2} \in \Reals$,
- IVP
Solving ODEs by reduction of order
- 2nd order
- Linear
- Non-constant coefficient, constant coefficient
- Homogeneous
- Given a solution $y_{1}$.
- Write the ODE in the form of $y'' + p(x) y' + q(x)y = 0$.
- Calculate the Wronskian by Abel’s Theorem $W = ce^{-\int p(x)dx}$.
- Find $y_{2}$ by reduction of order formula $y_{2} = y_{1} \displaystyle\int \dfrac{W}{y_{1}^{2}} \ dx$.
- Pick a convenient coefficient $c$ (but $c \not= 0$).
- Write the general solution $y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x)$.
- IVP
Solving Euler equation
- 2nd order
- Linear
- Non-constant coefficient (of special type)
- Homogeneous
- Euler equation
- Write the ODE in the form of $x^{2}y'' + \alpha xy' + \beta y = 0$.
- Write the indicial equation $s^{2} + (\alpha - 1)s + \beta = 0$.
- Solve the indicial equation $s_{1}, s_{2} = \dfrac{1 - \alpha \pm \sqrt{(\alpha - 1)^{2} - 4\beta}}{2}$.
- If $s_{1} \not = s_{2}$ and $s_{1}, s_{2} \in \Reals$,
- then the general solution is $y(x) = c_{1}x^{s_{1}} + c_{2}x^{s_{2}}$.
- If $s_{1} = s_{2}$, and $s_{1}, s_{2} \in \Reals$,
- then the general solution is $y(x) = c_{1}x^{s_{1}} + c_{2}\ln(x)x^{s_{1}}$.
- by Abel’s theorem and reduction of order
- If $s_{1} \not = s_{2}$, and $s_{1}, s_{2} \in \Complex$, where $s_{1}, s_{2} = \eta \pm i\mu$,
- then the general solution is
$y(x) = c_{1}x^{\eta} \cos(\mu \ln(x)) + c_{2}x^{\eta} \sin(\mu \ln(x))$, - where $\eta = -\dfrac{1-\alpha}{2}$, $\mu = \dfrac{\sqrt{4\beta-(\alpha - 1)^{2}}}{2}$.
- by Euler’s formula
- then the general solution is
- If $s_{1} \not = s_{2}$ and $s_{1}, s_{2} \in \Reals$,
- IVP
Solving nonhomogeneous ODEs by method of undetermined coefficients
- 2nd order
- Linear
- Constant coefficient
- Nonhomogeneous
- Write the ODE in the form of $L[y] \equiv ay'' + by' + cy = g(x)$.
- Calculate the solution $y_{H}$ to the homogeneous problem $L[y_{H}] = 0$.
- Guess a particular solution $y_{P}$ to the nonhomogeneous problem $L[y_{H}] = g(x)$.
- Substitute $y_{P}$ into the ODE and solve for any constants.
- Write the general solution $y(x) = y_{H}(x) + y_{P}(x)$.
- IVP
Rules for guessing $y_{P}$
- Consider each term of nonhomogeneity $g(x)$ separately.
- Beware of the constants
- Changes
- $\alpha \to A$
- $\beta \to B$
- $P_{n}(x) \to S_{n}(x)$ contains $\alpha_{i} \to A_{i}, \forall n$
- $Q_{m}(x) \to T_{m}(x)$ contains $\alpha_{i} \to A_{i}, \forall n$
- No changes
- $k, \omega$
- Changes
- If a term of guessed $y_{P}$ conflicts with $y_{H}$, then multiply the term of guessed $y_{P}$ (not the entire guess of $y_{P}$) by $x$.
Term of Nonhomogeneity $g(x)$ | Term of guessed particular solution $y_{P}$ |
---|---|
$\alpha$ | $A$ |
$\alpha e^{kx}$ | $A e^{kx}$ |
$P_{n}(x) = \sum\limits_{i=0}^{n} \alpha_{i}x^{i}$ | $S_{n}(x) = \sum\limits_{i=0}^{n} A_{i}x^{i}$ |
$e^{k x}P_{n}(x)$ | $e^{k x}S_{n}(x)$ |
$\alpha\cos(\omega x) + \beta\sin(\omega x)$ | $A\cos(\omega x) + B\sin(\omega x)$ |
$P_{n}(x)\cos(\omega x) + Q_{m}(x)\sin(\omega x)$ | $S_{n}(x)\cos(\omega x) + T_{m}(x)\sin(\omega x)$ |
$e^{k x}[P_{n}(x)\cos(\omega x) + Q_{m}(x)\sin(\omega x)]$ | $e^{k x}[S_{n}(x)\cos(\omega x) + T_{m}(x)\sin(\omega x)]$ |
Solving nonhomogeneous ODEs by variation of parameters
- 2nd order
- Linear
- Non-constant coefficient, constant coefficient
- Nonhomogeneous
- Write the ODE in the form of $L[y] \equiv y'' + p(x)y' + r(x)y = g(x)$.
- Calculate the solution to the homogeneous problem $L[y_{H}] = 0$
- $y_{H} = c_{1}y_{1} + c_{2}y_{2}$
- Calculate the Wronskian $W(y_{1}, y_{2})$
- Calculate the particular solution $y_{P}$ to the nonhomogeneous problem $L[y_{H}] = g(x)$
- $y_{P} = -y_{1} \displaystyle\int \dfrac{g(x)y_{2}}{W(y_{1}, y_{2})} dx + y_{2} \int \dfrac{g(x)y_{1}}{W(y_{1}, y_{2})} dx$
- Write the general solution $y(x) = y_{H}(x) + y_{P}(x)$.
- IVP
Mechanical vibrations
- A mass on a spring moves vertically in a fluid bath on Earth.
- Newton’s second law adds up all the forces
- $\sum F = mx''(t)$
- $F_{\mathrm{damper}} = -\gamma x'(t)$
- $F_{\mathrm{spring}} = -kx(t)$
- $F_{\mathrm{external}}$
- ODE: $mx''(t) + \gamma x'(t) + kx(t) = F_{\mathrm{ext}}(t)$
Unforced oscillation
- No external force on the system: $F_{\mathrm{ext}}(t) \equiv 0$
- Homogeneous ODE: $\boxed{mx'' + \gamma x' + kx = 0} \ (m > 0, \gamma, k \ge 0)$
- Overdamped system
- $\gamma^{2} - 4mk > 0$
- $\lambda_{1} \not= \lambda_{2} \in \Reals$
- General solution: $x(t) = c_{1}e^{\lambda_{1}t} + c_{2}e^{\lambda_{2}t}$
- Critically damped system
- $\gamma^{2} - 4mk = 0$
- $\lambda_{1} = \lambda_{2} \in \Reals$
- General solution: $x(t) = c_{1}e^{\lambda_{1}t} + c_{2}te^{\lambda_{2}t}$
- Underdamped system
- $\gamma^{2} - 4mk < 0$
- $\lambda_{1} \not= \lambda_{2} \in \Complex$
- General solution: $x(t) = e^{-\gamma t/2m} [c_{1} \cos(\omega t) + c_{2}\sin(\omega t)]$
- Undamped spring
- $\gamma = 0$
- General solution: $x(t) = c_{1} \cos(\omega t) + c_{2}\sin(\omega t)$
- Phase-amplitude form: $x(t) = A\cos(\omega t - \varphi)$
- amplitude $A = \sqrt{c_{1}^{2}+c_{2}^{2}}$
- phase $\varphi = \arctan(c_{2}/c_{1})$
- natural frequency $\omega = \sqrt{\dfrac{k}{m}}$
- period $T = \dfrac{2\pi}{\omega}$
- Graph: oscillating wave with constant amplitude
- Underdamped spring
- $\gamma > 0$
- General solution: $x(t) = e^{-\gamma t/2m} [c_{1} \cos(\omega t) + c_{2}\sin(\omega t)]$
- Phase-amplitude form: $x(t) = Ae^{-\gamma t/2m}\cos(\omega t - \varphi)$
- amplitude $A = \sqrt{c_{1}^{2}+c_{2}^{2}}$
- phase $\varphi = \arctan(c_{2}/c_{1})$
- natural frequency $\omega = \sqrt{\dfrac{k}{m}}$
- period $T = \dfrac{2\pi}{\omega}$
- Graph: oscillating wave with exponentially decreasing amplitude
- Overdamped system
Forced oscillation
- Has external force on the system: $F_{\mathrm{ext}}(t) \not= 0$
- Investigate a special case of oscillating external force $F_{\mathrm{ext}}(t) \equiv F_{0}\cos(\Omega t)$
- Non-homogeneous ODE: $\boxed{mx'' + \gamma x' + kx = F_{0}\cos(\Omega t)} \ (m, \gamma, k \ge 0)$
- No damping, no resonance
- $\gamma = 0, \Omega \not= \omega_{0} = \sqrt{\dfrac{k}{m}}$
- General solution: $x(t) = \left( c_{1} + \dfrac{F_{0}}{m(\omega_{0}^{2} - \Omega_{0}^{2})} \right) \cos(\omega_{0}t) + c_{2}\sin(\omega_{0} t)$
- Graph: modulated wave + beats pattern
- No damping, with resonance
- $\gamma = 0, \Omega = \omega_{0} = \sqrt{\dfrac{k}{m}}$
- General solution: $x(t) = c_{1}\cos(\omega_{0}t) + \left( c_{2} + \dfrac{F_{0}}{2\omega_{0}m}t \right) \sin(\omega_{0}t)$
- Graph: oscillating wave with linearly increasing amplitude
- No damping, no resonance
Systems of Differential Equations
Introduction to linear algebra
Linear independence
- Linear combination - $\mathbf{x} = c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + … + c_n\mathbf{x}_n$
- Linearly dependent - vectors satisfy the equation $c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + … + c_n\mathbf{x}_n = \mathbf{0}$ such that the constants are not all zero
- Linearly independent - vectors that are not linearly dependent
- Wronskian - $W[\mathbf{x}_1, \mathbf{x}_2, …, \mathbf{x}_n] = \det([\mathbf{x}_1, \mathbf{x}_2, …, \mathbf{x}_n]) = \det(X)$
- Checking linear independence
- If $W[\mathbf{x}_1, \mathbf{x}_2, …, \mathbf{x}_n] \not= 0$
- then they are linearly independent
- If $W[\mathbf{x}_1, \mathbf{x}_2, …, \mathbf{x}_n] \not= 0$
Matrix inversion
- Inverse of a square matrix - $A^{-1}$ thats satisfies $AA^{-1} = A^{-1}A = I_n$
- Finding matrix inverse
- $A = \begin{bmatrix} a & b \cr c & d \end{bmatrix}, A^{-1} = \dfrac{1}{ad-bc} \begin{bmatrix} d & -b \cr -c & a \end{bmatrix}$
- Solving systems of equations using inverse
- $A\mathbf{x} = \mathbf{b}$
- $\mathbf{x} = A^{-1}\mathbf{b}$
Matrix determinant
- Finding matrix determinant
- $A = \begin{bmatrix} a & b \cr c & d \end{bmatrix}, \det(A) = ad-bc$
- $A = \begin{bmatrix} a & b & c \cr d & e & f \cr g & h & i \end{bmatrix}, \det(A) = a\begin{vmatrix} e & f \cr h & i \end{vmatrix} - b\begin{vmatrix} d & f \cr g & i \end{vmatrix} + c\begin{vmatrix} d & e \cr g & h \end{vmatrix}$
- Singular matrix - matrix with a determinant of 0
- Equivalent statements
- $\det(A)=0$
- $A$ is singular
- $A^{-1}$ does not exist
- $A\mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solutions
- columns of $A$ are linearly dependent
- rows of $A$ are linearly dependent
Eigenvalues and eigenvectors of matrix
- Eigenvector - vector $\mathbf{v}$ such that $A\mathbf{v} = \lambda\mathbf{v}$ for square matrix $A$
- $\mathbf{0}$ is not an eigenvector by convention
- Eigenvalue - constant $\lambda$ corresponding to the eigenvector $\mathbf{v}$
- Finding eigenvalues and eigenvectors
- Solve for $\lambda$ in $\det(A-\lambda I) = 0$
- Substitute $\lambda$ into $A\mathbf{v} = \lambda\mathbf{v}$ to find relationship between components of eigenvectors
Systems of differential equations
Rewriting ODEs into systems of 1st order ODEs
- Define $n$ auxiliary variables $y_1$, …, $y_n$ for $n$th order ODE
- Let $y_1$ be the original function in the ODE
- Let $y_2 = y_1'$
- …
- Let $y_n = y_{n-1}'$
- Rearrange the ODE to isolate the highest order derivative, and write it in terms of the auxiliary variables.
- Write a system of ODEs with derivatives of auxiliary variables on the left hand side and their expression on the right hand side in terms of the auxiliary variables
- $y_1' = y_2$ (by definition)
- …
- $y_{n-1}' = y_{n}$ (by definition)
- $y_{n}' =$ highest order derivative in step 2
Linear system of ODEs
- $\begin{cases} y_1' = a_{11}y_1 + a_{12}y_2 + … + a_{1n}y_{n} + b_1 \cr y_2' = a_{21}y_1 + a_{22}y_2 + … + a_{2n}y_{n} + b_2 \cr \vdots \cr y_n' = a_{n1}y_1 + a_{n2}y_2 + … + a_{nn}y_{n} + b_n \end{cases} \Rightarrow \boxed{\mathbf{y}' = A\mathbf{y} + \mathbf{b}}$
- where $\mathbf{y} = \begin{bmatrix} y_1 \cr y_2 \cr \vdots \cr y_n \end{bmatrix}, \mathbf{y}' = \begin{bmatrix} y_1' \cr y_2' \cr \vdots \cr y_n' \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \cr b_2 \cr \vdots \cr b_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \cr a_{21} & a_{22} & \cdots & a_{2n} \cr \vdots & \vdots & \ddots & \vdots \cr a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$
- Homogeneous - $\mathbf{b} = \mathbf{0}$
- Nonhomogeneous - $\mathbf{b} \not= \mathbf{0}$
- Superposition principle
- If the vectors $\mathbf{x}_1, \mathbf{x}_2, …, \mathbf{x}_n$ are linearly independent solutions of the homogeneous system $\mathbf{x}' = P\mathbf{x}$
- then the general solution $\mathbf{x}$ is the linear combination of them
$\mathbf{x} = c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + … + c_n\mathbf{x}_n$
- then the general solution $\mathbf{x}$ is the linear combination of them
- If the vectors $\mathbf{x}_1, \mathbf{x}_2, …, \mathbf{x}_n$ are linearly independent solutions of the homogeneous system $\mathbf{x}' = P\mathbf{x}$
Solving homogeneous constant-coefficient systems of ODEs
- ODE system
- 1st order
- Linear
- Constant coefficient
- Homogeneous
- Write the system of ODEs in the form of $\mathbf{x}' = P\mathbf{x}$
- For $P\mathbf{v} = \lambda\mathbf{v}$, find the eigenvalues of $\lambda$ by solving $\det(P-\lambda I_n) = 0$
- For $P\mathbf{v} = \lambda\mathbf{v}$, find the eigenvectors of by substitution of $\lambda$
- Write the general solution
- $\le n$ distinct $\lambda\in\R$; $n$ distinct real $\mathbf{v}$
- General solution: $\mathbf{x} = c_1\mathbf{v}_1 e^{\lambda_1 t} + … + c_n\mathbf{v}_n e^{\lambda_n t}$
- $\le n$ distinct $\lambda\in\Complex$; $n$ distinct complex $\mathbf{v}$
- Known: $\mathbf{x}_1 = c_1\mathbf{v}_1 e^{\lambda_1 t} = \mathrm{Re}(\mathbf{x}_1) + i\mathrm{Im}(\mathbf{x}_1)$
- General solution: $\mathbf{x} = c_1 \mathrm{Re}(\mathbf{x}_1) + c_2 \mathrm{Im}(\mathbf{x}_1)$
- $\le n$ distinct $\lambda$; $<n$ distinct $\mathbf{v}$
- General solution: $\mathbf{x} = c_1 \mathbf{v} e^{\lambda t} + c_2(\mathbf{v}te^{\lambda t} + \vec{\eta}e^{\lambda t})$
- Find $\vec{\eta}$ (relationship between its components) by substituting into the ODE
- General solution: $\mathbf{x} = c_1 \mathbf{v} e^{\lambda t} + c_2(\mathbf{v}te^{\lambda t} + \vec{\eta}e^{\lambda t})$
- $\le n$ distinct $\lambda\in\R$; $n$ distinct real $\mathbf{v}$
Solving Euler systems
- Linear
- Non-constant coefficient (of special type)
- Homogeneous
- Euler system
- Write the system of ODEs in the form of $\mathbf{x}' = P\mathbf{x}$
- For $P\mathbf{v} = \lambda\mathbf{v}$, find the eigenvalues of $\lambda$ by solving $\det(P-\lambda I_n) = 0$
- For $P\mathbf{v} = \lambda\mathbf{v}$, find the eigenvectors of by substitution of $\lambda$
- Write the general solution
- $\le n$ distinct $\lambda\in\R$; $n$ distinct real $\mathbf{v}$
- General solution: $\mathbf{x} = c_1\mathbf{v}_1 t^{\lambda_1} + … + c_n\mathbf{v}_n t^{\lambda_n}$
- Other conditions are not discussed
- $\le n$ distinct $\lambda\in\R$; $n$ distinct real $\mathbf{v}$
Laplace Transform
Laplace transform concepts
- Laplace transform - $\mathcal{L}[f(t)] = F(s) = \displaystyle\int_{0}^{\infin} e^{-st}f(t) \ dt$
- Heaviside function (unit step function)
- $u_c(t) = u(t-c) = \begin{cases} 0 & t < c \cr 1 & t \ge c \end{cases}$
Properties of Laplace transform
- Laplace transform is linear
- $\mathcal{L}[c_{1}f(t)+c_{2}g(t)] = c_{1}\mathcal{L}[f(t)] + c_{2}\mathcal{L}[g(t)]$
- Laplace transforms of derivatives incorporate initial conditions
- $\mathcal{L}[f'(t)] = sF(s) - f(0)$
- $\mathcal{L}[f''(t)] = s^2F(s)-sf(0)-f'(0)$
- $\mathcal{L}[f^{(n)}(t)] = s^nF(s)-s^{n-1}f(0) - s^{n-2}f^{(1)}(0) - … - f^{(n-1)}(0)$
- Heaviside function has a simple Laplace transforms
- $\mathcal{L}[u_c(t)] = \dfrac{e^{-sc}}{s}$
Translation theorems
- Time domain translation
- $\mathcal{L}[f(t-c)u_{c}(t)] = e^{-sc}\mathcal{L}[f(t)]$
- $\mathcal{L}^{-1}[e^{-sc}\mathcal{L}[f(t)]] = f(t-c)u_c(t)$
- Laplace domain translation
- $\mathcal{L}[e^{ct}f(t)] = F(s-c)$
- $\mathcal{L}^{-1}[F(s-c)] = e^{ct}f(t)$
Solving ODEs with Laplace transform
- Time domain: difficult ODE
- Laplace transform ($t \to s$)
- Laplace domain: easy algebra problem
- Solve the algebra problem
- Laplace domain: solution to algebra problem
- Inverse Laplace transform ($s \to t$)
- Time domain: solution of difficult ODE
- Problem solved
Laplace transform table
Inverse L.T. $f(t)$ |
Laplace Transform $F(s)$ |
Inverse L.T. $f(t)$ |
Laplace Transform $F(s)$ |
---|---|---|---|
$1$ | $\dfrac{1}{s}$ | $e^{at}$ | $\dfrac{1}{s-a}$ |
$t^{n}$ | $\dfrac{n!}{s^{n+1}}$ | $\sqrt{t}$ | $\dfrac{\sqrt{\pi}}{2s^{3/2}}$ |
$\sin(at)$ | $\dfrac{a}{s^{2}+a^{2}}$ | $t\sin(at)$ | $\dfrac{2as}{(s^{2}+a^{2})^{2}}$ |
$\cos(at)$ | $\dfrac{s}{s^{2}+a^{2}}$ | $t\cos(at)$ | $\dfrac{s^{2}-a^{2}}{(s^{2}+a^{2})^{2}}$ |
$\sin(at)-at\cos(at)$ | $\dfrac{2a^{3}}{(s^{2}+a^{2})^{2}}$ | $\cos(at)-at\sin(at)$ | $\dfrac{s(s^{2}-a^{2})}{(s^{2}+a^{2})^{2}}$ |
$\sin(at)+at\cos(at)$ | $\dfrac{2as^{2}}{(s^{2}+a^{2})^{2}}$ | $\cos(at)+at\sin(at)$ | $\dfrac{s(s^{2}+3a^{2})}{(s^{2}+a^{2})^{2}}$ |
$\sinh(at)$ | $\dfrac{a}{s^{2}-a^{2}}$ | $\sin(at+b)$ | $\dfrac{s\sin(b)+a\cos(b)}{s^2+a^2}$ |
$\cosh(at)$ | $\dfrac{s}{s^{2}-a^{2}}$ | $\cos(at+b)$ | $\dfrac{s\cos(b)-a\sin(b)}{s^2+a^2}$ |
$e^{at}\sin(bt)$ | $\dfrac{b}{(s-a)^2+b^2}$ | $e^{at}\sinh(bt)$ | $\dfrac{b}{(s-a)^2-b^2}$ |
$e^{at}\cos(bt)$ | $\dfrac{s-a}{(s-a)^2+b^2}$ | $e^{at}\cosh(bt)$ | $\dfrac{s-a}{(s-a)^2-b^2}$ |
$u_{c}(t)$ | $\dfrac{e^{-sc}}{s}$ |